CBSE Test Paper 04 Chapter 1 Real Numbers

- 1. The largest number which divides 245 and 1029 leaving remainder 5 in each case is
 - (1)
 - a. 8
 - b. 12
 - **c.** 4
 - d. 16
- 2. Every positive odd integer is of the form_____where 'q' is some integer. (1)
 - a. 2q + 2
 - b. 5q + 1
 - c. 3q + 1
 - d. 2q + 1
- 3. Which of the following is a rational number? $\sqrt{15}$, $\sqrt{9}$, $\sqrt{10}$, $\sqrt{12}$. (1)
 - a. $\sqrt{12}$
 - b. $\sqrt{9}$
 - c. $\sqrt{10}$
 - d. $\sqrt{15}$
- 4. What is a lemma? (1)
 - a. contradictory statement
 - b. proven statement
 - c. no statement
 - d. None ot these

5. If HCF(a, b) = 12 and $a \times b$ = 1800, then LCM(a, b) is (1)

- a. 150
- b. 90
- c. 900
- d. 1800
- The HCF of two numbers is 145 and their LCM is 2175. If one number is 725, find the other. (1)

- 7. What is the HCF of the smallest composite number and the smallest prime number?(1)
- **8**. Find the HCF of the following polynomials: $x^8 y^8$; $\left(x^4 y^4
 ight)\left(x + y
 ight)$. (1)
- 9. An army contingent of 1000 members is to march behind an army band of 56 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march? (1)
- 10. If a and b are prime numbers, then what is their L.C.M.? (1)
- **11.** Find the HCF of 1,656 and 4,025 by Euclid's division algorithm. **(2)**
- 12. Find the smallest number which when increased by 17 is exactly divisible by both 520 and 468. (2)
- **13.** Write a rational number between $\sqrt{2}$ and $\sqrt{3}$. (2)
- **14.** If p is a prime number, then prove \sqrt{p} that is an irrational. (3)
- 15. Find the HCF of 180, 2<mark>52 an</mark>d 324 by using Euclid's division lemma. (3)
- **16.** Prove that $15 + 17\sqrt{3}$ is an irrational number. (3)
- **17.** Find the LCM and HCF of 336 and 54 and verify that LCM \times HCF = product of two numbers. **(3)**
- **18.** On dividing the polynomial $4x^4 5x^3 39x^2 46x 2$ by the polynomial g(x), the quotient is $x^2 3x 5$ and the remainder is -5x + 8. Find the polynomial g(x). **(4)**
- 19. If the HCF of 152 and 272 is expressible in the form 272 imes 8+ 152x, then find x. (4)
- 20. Prove that if x and y are odd positive integers, then x² + y² is even but not divisible by 4. (4)

CBSE Test Paper 04

Chapter 1 Real Numbers

Solution

1. d. 16

Explanation: Let us subtract 5 (the remainder) from each number in order to find their HCF.

245 - 5 = 240 1029 - 5 = 1024

Now, Let us find HCF of 240 , 1024

1024 = 240 \times 4 + 64

 $240 = 64 \times 3 + 48$

 $64 = 48 \times 1 + 16$

 $48 = 16 \times 3 + 0$

The largest number which divides 245 and 1029 leaving remainder 5 in each case is 16.

2. d. 2q + 1

Explanation: Let a be any positive integer and b = 2Then by applying Euclid's Division Lemma, we have, a = 2q + r,

where $0\leqslant r<2$ \Rightarrow r = 0 or 1...a = 2q or 2q + 1.

Therefore, it is clear that a = 2q i.e., a is an even integer.

Also, 2q and are two 2q + 1 consecutive integers, therefore, 2q + 1 is an odd integer.

3. b. $\sqrt{9}$

Explanation: $\sqrt{9}$ is an irrational number but because $\sqrt{9} = \sqrt{3}^2 = 3$ and 3 is a rational number.

4. b. proven statement

Explanation: A lemma is a proven statement that is used to prove another statement.

5. a. 150

Explanation: Using the result,

 $HCF \times LCM$ = Product of two natural numbers \Rightarrow LCM (a, b) = $\frac{1800}{12}$ = 150

6. We are given that:

HCF =145,LCM=2175 a=725 and b=?

We know that

 $LCM \times HCF = a \times b$ $b = \frac{HCF \times LCM}{\frac{145 \times 2175}{725}} = 435$

Therefore the second number is 435

- 7. The smallest prime number is 2 and the smallest composite number is $4 = 2^2$ Hence the required HCF (4 , 2) = 2
- 8. $P(x) = x^8 y^8$ $= (x - y)(x + y)(x^2 + y^2)(x^4 + y^4)$ Using Identity $a^2 - b^2 = (a + b)(a - b)$ $Q(x) = (x^4 - y^4)(x + y)$ $= (x - y)(x + y)(x^2 + y^2)(x + y)$ Using Identity $a^2 - b^2 = (a + b)(a - b)$ \therefore HCF = $(x - y)(x + y)(x^2 + y^2) = x^4 - y^4$ Using Identity $a^2 - b^2 = (a + b)(a - b)$
- 9. $1000 = 2 \times 2 \times 2 \times 5 \times 5 \times 5$ $56 = 2 \times 2 \times 2 \times 7$ HCF of 1000 and 56 = 8 \therefore Maximum number of columns = 8
- 10. $a = 1 \times a$
 - $b = 1 \times b$
 - HCF of a and b = 1

Their LCM = $1 \times a \times b$

- LCM of a and b = ab
- 11. AS 4025 > 1656 So applying Euclid's division algorithm on 4025 and 1656 we get

 $4025 = 1656 \times 2 + 713$ $1656 = 713 \times 2 + 230$ $713 = 230 \times 3 + 23$ $230 = 23 \times 10$ Hence, HCF(1656, 4025) = 23

12. The smallest number divisible by 520 and 468 = LCM(520,468)

Prime factors of 520 and 468 are :

 $520 = 2^3 \times 5 \times 13$ $468 = 2 \times 2 \times 3 \times 3 \times 13$

Hence LCM(520,468) = $2^3 \times 3^2 \times 5 \times 13 = 8 \times 9 \times 5 \times 13 = 4680$

Now the smallest number which when increased by 17 is exactly divisible by both 520 and 468.

= LCM(520,468)-17

- = 4680-17
- = 4663
- 13. We can write the two given irrational numbers as:

$$(\sqrt{2})^2 = 2$$
 and $(\sqrt{3})^2 = 3$

Let p be any rational number between $\sqrt{2}$ and $\sqrt{3}$.

$$\Rightarrow (\sqrt{2})^2 < (p)^2 < (\sqrt{3})$$

 $\Rightarrow 2 < (p)^2 < 3$

One possible value of $(p)^2 = 2.25$

$$\Rightarrow$$
 p = 1.5

- 14. Let p be a prime number and if possible, let \sqrt{p} be rational.
 - $\therefore \sqrt{p} = rac{m}{n}$, where m and n are co-primes and $\mathsf{n}
 eq 0$

Squaring on both sides, we get

$$\frac{(\sqrt{p})^2}{1} = \left(\frac{m}{n}\right)^2$$

or, $p = \frac{m^2}{n^2}$
or, $pn^2 = m^2$(1)

: Hence p is a factor of m^2 , So p is a factor of m.....(1)

So let m=pt ,t is any integer

On putting m=pt in.(i), we get

$$pn^2 = p^2 t^2$$

 $n^2 = pt^2$

15. Given numbers are 180, 252 and 324.

324 > 252 >180

On applying Euclid's Division lemma for 324 and 252, we get

 $324 = (252 \times 1) + 72$

Here, remainder = $72 \neq 0$

So, again applying Euclid's Division lemma with new dividend 252 and new divisor

72, we get

 $252 = (72 \times 3) + 36$

Here, remainder = $36 \neq 0$

So, again applying Euclid's Division lemma with new dividend 72 and new divisor 36, we get

 $72 = (36 \times 2) + 0$

Here, remainder = 0 and divisor is 36

So, HCF of 324 and 25<mark>2 is 3</mark>6

Now, applying Euclid's Division lemma for 180 and 36, we get

 $180 = (36 \times 5) + 0$

Here, remainder = 0

So HCF of 180 and 36 is 36.

Hence, HCF of 180,252 and 324 is 36.

16. Suppose $\sqrt{3} = \frac{a}{b}$, where a and b are co-prime integers, $b \neq 0$ Squaring both sides,

$$\Rightarrow 3 = \frac{a^2}{b^2}$$

Multiplying with b on both sides,
$$\Rightarrow 3b = \frac{a^2}{b}$$

LHS = $3 \times b = Integer$
RHS = $\frac{a^2}{b} = \frac{Integer}{Integer} = Rational Number$
$$\Rightarrow LHS \neq RHS$$

... Our supposition is wrong.

 $\Rightarrow \sqrt{3} \text{ is irrational.}$ Suppose $15 + 17\sqrt{3}$ is a rational number. $\therefore 15 + 17\sqrt{3} = \frac{a}{b}, \text{ where } a \text{ and } b \text{ are co-prime, } b \neq 0$ $\Rightarrow \quad 17\sqrt{3} = \frac{a}{b} - 15$ $\sqrt{3} = \frac{a - 15b}{17b}$ $\frac{a - 15b}{17b} \text{ is rational number,}$ $\sqrt{3} \text{ is irrational.}$ $\therefore \quad \sqrt{3} \neq \frac{a - 15b}{17b}$

: Our supposition is wrong.

 \Rightarrow 15 + 17 $\sqrt{3}$ is irrational.

Therefore,

LCM (336, 54) = $2^4 imes 3^3 imes 7=3024$

HCM (336, 54) = $2 \times 3 = 6$.

Verification:

LCM $\,\times\,$ HCF = 3024 $\,\times\,$ 6 = 1814 and 336 $\,\times\,$ 54 = 18144

i.e. LCM \times HCF = product of two numbers

- 18. It is given that on dividing the polynomial $4x^4 5x^3 39x^2 46x 2$ by the polynomial g(x), the quotient is $x^2 - 3x - 5$ and the remainder is -5x + 8. We have to find the polynomial g(x). Now, we know that Dividend = (Divisor \times Quotient) + Remainder $4x^4 - 5x^3 - 39x^2 - 46x - 2 = g(x)(x^2 - 3x - 5) + (-5x + 8)$ or, $4x^4 - 5x^3 - 39x^2 - 46x - 2 + 5x - 8 = g(x) (x^2 - 3x - 5)$ or, $4x^4 - 5x^3 - 39x^2 - 41x - 10 = g(x)(x^2 - 3x - 5)$ $g(x) = \frac{4x^4 - 5x^3 - 39x^2 - 41x - 10}{(x^2 - 3x - 5)}$ $4x^2 + 7x + 2$ $x^{2} - 3x - 5) \overline{4x^{4} - 5x^{3} - 39x^{2} - 41x - 10}$ $4x^4 - 12x^3 - 20x^2$ + + $7x^3 - 19x^2 - 41x - 10$ $7x^3 - 21x^2 - 35x$ -+++ $2x^2-6x-10$ $2x^2 - 6x - 10$ Hence, $g(x) = 4x^2 + 7x + 2$
- 19. On applying the Euclid's division lemma to find HCF of 152, 272, we get

152)272 (1
152
120
120)152 (1
120
32
272 =
$$152 \times 1 + 120$$

Here the remainder = 0

0.

Using Euclid's division lemma to find the HCF of 152 and 120, we get

 $152=120\times1+32$

Again the remainder = 0.

Using division lemma to find the HCF of 120 and 32, we get

32)120 (3 $120 = 32 \times 3 + 24$ Similarly, 8)24 (3 $32 = 24 \times 1 + 8$ $24 = 8 \times 3 + 0$ HCF of 272 and 152 is 8. $272 \times 8 + 152x = H.C.F.$ of the numbers \Rightarrow 8 = 272 × 8 + 152x $\Rightarrow 8-272 \times 8 = 152x$ $egin{array}{lll} \Rightarrow 8(1-272) = 152x \ \Rightarrow x = rac{-2168}{152} = rac{-271}{19} \end{array}$ 20. Let x = 2p + 1 and y = 2q + 1 $\therefore x^2 + y^2 = (2p+1)^2 + (2q+1)^2$ $=4p^{2}+4p+1+4q^{2}+4q+1$ $=4(p^2+q^2+p+q)+2$ $=2\left(2p^{2}+2q^{2}+2p+2q+1
ight)$ x = 2m where $m = \left(2p^2 + 2q^2 + 2p + 2q + 1
ight)$

 \therefore $x^2 + y^2$ is an even number but not divisible by 4.