CBSE Test Paper 02 Chapter 2 polynomials

- 1. If ' α ' and ' β ' are the zeroes of the polynomial x² -6x + 8, then the value of $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ is
 - (1)
 - a. 8
 - b. 6
 - **c.** 12
 - d. 9
- 2. A polynomial of degree _____is called a linear polynomial. (1)
 - a. 1
 - b. 3
 - c. 2
 - d. 0
- 3. If $\sqrt{2}$ and $-\sqrt{2}$ are the zeroes of $2x^4 3x^3 3x^2 + 6x 2$, then the other zeroes are (1)
 - a. $-2 \text{ and } -\frac{1}{2}$
 - b. 2 and $\frac{1}{2}$
 - c. $\frac{1}{2}$ and $-\frac{1}{2}$

d. 1 and
$$\frac{1}{2}$$

4. If ' α ' and ' β ' are the zeroes of a quadratic polynomial ax² + bx + c, then $\alpha + \beta =$ (1)

- 1. $\frac{-b}{a}$
2. $\frac{-c}{a}$
3. $\frac{c}{a}$
4. $\frac{b}{a}$
- 5. The degree of a biquadratic polynomial is (1)
 - 1. 2
 - 2. 4
 - 3. 3
 - 4. 1
- 6. Find a quadratic polynomial, whose sum and product of zeros are -5 and 6 respectively. (1)

- 7. Sum and product of zeroes of a quadratic polynomial are 0 and $\sqrt{15}$ respectively. Find the quadratic polynomial. **(1)**
- 8. If α and β are the zeroes of the quadratic polynomial f(x) = x² 5x + 4, find the value of $\frac{1}{\alpha} + \frac{1}{\beta} 2\alpha\beta$. (1)
- 9. If one zero of $2x^2 3x + k$ is reciprocal to the other, then find the value of k (1)
- **10.** If α and β are the zeroes of the quadratic polynomial $p(x) = x^2 p(x + 1) c$ such that $(\alpha + 1)(\beta + 1) = 0$, what is the value of c? **(1)**
- 11. Find the value of b for which the polynomial $2x^3+9x^2-x-b$ is divisible by 2x+3 (2)
- **12.** α , β are zeroes of the quadratic polynomial x² (k + 6)x + 2(2k 1). Find the value of k if $\alpha + \beta = \frac{1}{2}\alpha\beta$. (2)
- **13.** If α and β are the zeros of the polynomial $f(x) = 5x^2 7x + 1$, find the value of $\left(\frac{1}{\alpha} + \frac{1}{\beta}\right)$. (2)
- **14.** If α and β are the zeros of the quadratic polynomial $f(x) = 3x^2 4x + 1$, find a quadratic polynomial whose zeros are $\frac{\alpha^2}{\beta}$ and $\frac{\beta^2}{\alpha}$. (3)
- 15. Obtain all zeros of the polynomial (2x³ 4x x² + 2), if two of its zeros are $\sqrt{2}$ and $\sqrt{2}$ (3)
- **16.** Find the zeroes of the quadratic polynomial $5x^2 + 8x 4$ and verify the relationship between the zeroes and the coefficients of the polynomial. **(3)**
- **17.** Find the zeroes of the polynomial $y^2 + \frac{3}{2}\sqrt{5}y$ 5 by factorisation method and verify the relationship between the zeroes and coefficient of the polynomials. **(3)**
- **18.** If two zeroes of the polynomial $p(x) = x^4 6x^3 26x^2 + 138x 35$ are $2 \pm \sqrt{3}$. Find the other zeroes. **(4)**
- **19.** Given that $x \sqrt{5}$ is a factor of the polynomial $x^3 3\sqrt{5}x^2 5x + 15\sqrt{5}$, find all the zeroes of the polynomial. **(4)**
- **20.** If the polynomial $x^4 6x^3 + 16x^2 25x + 10$ is divided by $(x^2 2x + k)$, the remainder comes out to be x + a, find k and a. **(4)**

CBSE Test Paper 02 Chapter 2 polynomials

Solution

1. d. 9

Explanation: Here
$$a = 1, b = -6, c = 8, \alpha + \beta = 6, \alpha\beta = 8$$

Since $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha\beta} = \frac{(\alpha+\beta)[\alpha^2+\beta^2-\alpha\beta]}{\alpha\beta} = \frac{(\alpha+\beta)[\alpha^2+\beta^2+2\alpha\beta-3\alpha\beta]}{\alpha\beta}$
 $= \frac{(\alpha+\beta)[(\alpha+\beta)^2-3\alpha\beta]}{\alpha\beta}$
 $= \frac{6[6^2-3\times8]}{8} = 9$

2. a. 1

Explanation: A polynomial of degree 1 is called a linear polynomial. Example 4x + 3, 65y are linear polynomials.

3. d. 1 and $\frac{1}{2}$

Explanation: Since $\sqrt{2}$ and $-\sqrt{2}$ are the zeroes of $2x^4 - 3x^3 - 3x^2 + 6x - 2$, then $(x - \sqrt{2})$ and $(x + \sqrt{2})$ are the factors of given polynomial i.e., $(x - \sqrt{2})(x + \sqrt{2}) = (x^2 - 2)$ is a factor of given polynomial. $\therefore p(x) = 2x^4 - 3x^3 - 3x^2 + 6x - 2 \Rightarrow p(x) = (x^2 - 2)(2x^2 - 3x + 1)$ $x^2 - 2)\overline{2x^4 - 3x^3 - 3x^2 + 6x - 2}$ $2x^4 - 4x^2$ $-\frac{-4}{-3x^3 + x^2 + 6x - 2}$ $2x^4 - -4x^2$ $-\frac{-4}{-3x^3 + x^2 + 6x - 2}$ $x^2 - 2)\overline{2x^2 - 2x - x + 1} \Rightarrow$ $p(x) = (x^2 - 2)[2x(x - 1) - 1(x - 1)] \Rightarrow$ $p(x) = (x^2 - 2)(x - 1)(2x - 1)$ \therefore Other zeroes are x - 1 = 0 and 2x - 1 = 0 \Rightarrow x = 1 and $x = \frac{1}{2}$ a. $\frac{-b}{a}$

4.

Explanation: If α and β are the zeroes of a quadratic polynomial $ax^2 + bx + c,$

: Sum of the zeroes of a quadratic polynomial $ax^2 + bx + c = \frac{-(\text{coefficient of } x)}{\text{coefficient of } x^2}$ then $\alpha + \beta = \frac{-b}{a}$

5. b. 4

Explanation: Biquadratic polynomial is a polynomial of the fourth degree. Biquadratic polynomial = $a(x^2)^2 + b(x)^2 + c = ax^4 + bx^2 + c$

6. Let α and β be the zeros of the required polynomial.

Then, $(\alpha + \beta) = -5$ and $\alpha\beta = 6$ $f(x) = x^2 - (\alpha + \beta)x + \alpha\beta = x^2 - (-5)x + 6$ $= x^2 + 5x + 6.$

Hence, the required polynomial is $f(x) = x^2 + 5x + 6$.

- 7. Here sum of zeroes, S = 0Product of zeroes, $P = \sqrt{15}$ Quadratic polynomial $p(x) = x^2 - (S)x + P$ $= x^2 - 0x + \sqrt{15}$ $= x^2 + \sqrt{15}$
- 8. We have, α and β are the roots of the quadratic polynomial. $f(x) = x^2 5x + 4$ Sum of zeros: $\alpha + \beta = -\frac{b}{a} = -\frac{\text{coefficient of } x}{\text{coefficient of } x^2}$ product of zeros: $\alpha\beta = \frac{c}{a} = \frac{\text{constant term}}{\text{coefficient of } x^2}$ We have a=1,b=-5 and c= 4. Sum of the roots = $\alpha + \beta = 5$ Product of the roots = $\alpha\beta = 4$ So, $\frac{1}{\alpha} + \frac{1}{\beta} - 2\alpha\beta = \frac{\beta + \alpha}{\alpha\beta} - 2\alpha\beta$

$$5/4-2\times 4=5/4-8$$
 =(5 $-32)/4$ = $-27/4$ Hence,we get the result of $\frac{1}{\alpha}+\frac{1}{\beta}-2\alpha\beta$ = $-\frac{27}{4}$

9. Let be the two zeroes of the given polynomial.

Then,
$$\alpha \times \frac{1}{\alpha} = \frac{Constant_term}{Coefficient(x^2)}$$

https://prernaeducation.co.in

$$\Rightarrow 1 = \frac{k}{2}$$
$$\Rightarrow k = 2$$

10. It is given that:

$$p(x) = x^{2} - px - p - c$$

Here a = 1, b = - p and c = -p - c
$$\therefore \quad \alpha + \beta = p \text{ and } \alpha\beta = (-p - c)$$

$$\therefore \quad (\alpha + 1)(\beta + 1) = 0$$

$$\Rightarrow \quad \alpha\beta + \alpha + \beta + 1 = 0$$

$$\Rightarrow -p - c + p + 1 = 0$$

$$\Rightarrow c = 1$$

11.

If the polynomial $2x^3 + 9x^2 - x - b$ is divisible by 2x + 3, then the remainder must be zero.

So, 15 - b = 0, b = 15

12. Polynomial is $x^2 - (k + 6)x + 2(2k - 1)$.

$$\alpha + \beta = -\frac{b}{a} = \frac{k+6}{1} = k+6$$

and $\alpha\beta = \frac{c}{a} = \frac{2(2k-1)}{1} = 4k-2$
Now, $\alpha + \beta = \frac{1}{2}\alpha\beta$
 $k+6 = \frac{1}{2}(4k-2)$
 $k+6 = 2k-1$
 $k=7$

13. Compare $f(x) = 5x^2 - 7x + 1$ with $ax^2 + bx + c$ we get, a = 5. b = -7 and c= 1

Since α and β are the zeros of $5x^2 - 7x + 1$, we have $\alpha + \beta = -\frac{(b)}{a} = -\frac{(-7)}{5} = \frac{7}{5}$ $\alpha\beta = \frac{c}{a} = \frac{1}{5}$ $\therefore \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha\beta}$ $= \frac{\frac{7}{5}}{\frac{1}{5}}$ $= \frac{7}{5} \times \frac{5}{1}$ = 7

14. Here it is given that the zeros of $f(x) = 3x^2 - 4x + 1$ are $\alpha and\beta$ Here a=3, b=-4 and c=1 $\alpha + \beta = -\frac{b}{a} = -\left(-\frac{4}{3}\right) = \frac{4}{3}$ and $\alpha\beta = \frac{c}{a} = \frac{1}{3}$

Let S and P denote respectively the sum and product of the zeros of the polynomial whose zeroes are $\frac{\alpha^2}{\beta}$ and $\frac{\beta^2}{\alpha}$, then $S = \frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha\beta} = \frac{(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)}{\alpha\beta} = \frac{\left(\frac{4}{3}\right)^3 - 3 \times \frac{1}{3} \times \frac{4}{3}}{\frac{1}{3}} = \frac{28}{.9}$ and, $P = \frac{\alpha^2}{\beta} \times \frac{\beta^2}{\alpha} = \alpha\beta = \frac{1}{3}$(2) Hence the polynomial with zeros $\frac{\alpha^2}{\beta}$ and $\frac{\beta^2}{\alpha}$ is $g(x) = x^2 - Px + S = 0$

putting values of P and S from (1) and (2) we get the polynomial $g(x)=x^2-\frac{28}{9}x+\frac{1}{3}$ or $g(x)=9x^2-28x+3$

15. The given polynomial is:

$$f(x) = 2x^3 - x^2 - 4x + 2.$$

It is given that the two zeroes of the above polynomial are $\sqrt{2}$ and - $\sqrt{2}$

Therefore, $(x - \sqrt{2})(x + \sqrt{2}) = (x^2 - 2)$ is a factor of f(x).

Now we divide $(x) = 2x^3 - x^2 - 4x + 2$ by $(x^2 - 2)$, we obtain

Where quotient = (2x - 1)

$$\therefore f(x) = 0 \Rightarrow (x^2 - 2)(2x - 1) = 0$$

$$\Rightarrow (x - \sqrt{2}) (x + \sqrt{2})(2x - 1) = 0$$

$$\Rightarrow (x - \sqrt{2}) = 0 \text{ or } (x + \sqrt{2}) = 0 \text{ or } (2x - 1) = 0$$

$$\Rightarrow x = \sqrt{2} \text{ or } x = -\sqrt{2} \text{ or } x = \frac{1}{2}.$$

Hence, all zeros of f(x) are $\sqrt{2}$, $-\sqrt{2}$ and $\frac{1}{2}$.

16.
$$p(x) = 5x^2 + 8x - 4 = 0$$

 $= 5x^2 + 10x - 2x - 4 = 0$
 $= 5x(x + 2) - 2(x + 2) = 0$
 $= (x + 2)(5x - 2) = 0$
Hence, zeroes are -2 and $\frac{2}{5}$
Verification: Sum of zeroes $= -2 + \frac{2}{5} = -\frac{-8}{5}$
Product of zeroes $= (-2) \times (\frac{2}{5}) = -\frac{4}{5}$
Again sum of zeroes $= -\frac{Coeff. of x}{Coeff. of x^2} = -\frac{8}{5}$
Product of zeroes $= \frac{Constant term}{Coeff. of x^2} = -\frac{4}{5}$
Verified.

18. As 2 ± $\sqrt{3}$ are the zeroes of p(x), so x - (2 ± $\sqrt{3}$) are the factors of p(x) and the product of factors,

$$\{x - (2 + \sqrt{3})\} \{x - (2 - \sqrt{3})\}$$

$$= \{(x - 2) - \sqrt{3}\} \{(x - 2) + \sqrt{3}\}$$

$$= (x - 2)^2 - (\sqrt{3})^2$$

$$= x^2 - 4x + 1$$

$$Dividing p(x) by x^2 - 4x + 1$$

$$\frac{x^2 - 2x - 35}{x^2 - 4x + 1)x^4 - 6x^3 - 26x^2 + 138x - 35}$$

$$\frac{x^4 - 4x^3 + x^2}{-2x^3 + 8x^2 - 2x}$$

$$\frac{+ - +}{-35x^2 + 140x - 35}$$

$$\frac{+ - +}{0}$$

Factorising $(x^2 - 2x - 35)$ we get = (x + 5)(x - 7)x = -5, 7

Hence, other two zeroes of p(x) are - 5 and 7.

$$\frac{x^2 - 2\sqrt{5} x - 15}{x - \sqrt{5} x^3 - 3\sqrt{5} x^2 - 5x + 15\sqrt{5}} \\
\frac{x^3 - \sqrt{5} x^2}{- + - - 2\sqrt{5} x^2 - 5x} \\
- 2\sqrt{5} x^2 + 10x \\
- - 15x + 15\sqrt{5} \\
- 15x + 15\sqrt{5} \\
- 0$$

On factorising the quotient, we get

$$\begin{aligned} x^2 - 2\sqrt{5}x - 15 &= x^2 - 3\sqrt{5}x + \sqrt{5}x - 15 \\ &= x(x - 3\sqrt{5}) + \sqrt{5}(x - 3\sqrt{5}) \\ &= (x + \sqrt{5})(x - 3\sqrt{5}) \\ \therefore & (x + \sqrt{5})(x - 3\sqrt{5}) = 0 \\ &\Rightarrow & x = -\sqrt{5}, 3\sqrt{5} \end{aligned}$$

Therefore, all the zeroes are $\sqrt{5}, -\sqrt{5}$ and $3\sqrt{5}$.

20.

$$x^{2} - 2x + k) \frac{x^{2} - 4x + (8 - k)}{x^{4} - 6x^{3} + 16x^{2} - 25x + 10}$$

$$x^{4} - 2x^{3} + kx^{2}$$

$$- + -$$

$$- 4x^{3} + (16 - k)x^{2} - 25x + 10$$

$$- 4x^{3} + 8x^{2} - 4kx$$

$$+ - +$$

$$(8 - k)x^{2} - (25 - 4k)x + 10$$

$$(8 - k)x^{2} - (16 - 2k)x + (8k - k^{2})$$

$$- + -$$

$$(2k - 9)x + (10 - 8k + k^{2})$$

Given, remainder = x + a

On comparing the multiples of x

(2k - 9)x = 1

or,
$$2k - 9 = 1$$
 or $k = \frac{10}{2} = 5$

On putting this value of k into other portion of remainder, we get

and $a = 10 - 8k + k^2 = 10 - 40 + 25 = -5$

9 of 9