
CBSE Test Paper 04 CH-1 Number Systems

- a. 7
- b. 6
- c. 8
- d. 10

$$2. \left(\frac{125}{216}\right)^{\frac{-1}{3}} =$$

- a. $\frac{6}{5}$
- b. 125
- c. $\frac{5}{6}$
- d. 216

- a. irrational number
- b. natural number
- c. rational number
- d. integer
- 4. $16\sqrt{13} \div 9\sqrt{52}$ is equal to
 - a. $\frac{3}{9}$
 - b. $\frac{9}{8}$
 - c. $\frac{8}{9}$

- d. None of these
- 5. The value of $x^{a-b} \times x^{b-c} \times x^{c-a}$ is
 - a. 1
 - b. 2
 - c. x
 - d. 0
- 6. Fill in the blanks:
 - $\frac{5}{6}$ in the decimal form is _____.
- 7. Fill in the blanks:

Rational number $\frac{42}{100}$ in decimal form is _____.

- 8. Rationalise the denominator of $\frac{2+\sqrt{3}}{2-\sqrt{3}}$
- 9. Classify the following number as rational or irrational.0.3796
- 10. Prove $\sqrt{5}$ 2 is an irrational.
- 11. Is zero a rational number? Can you write it in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$?
- 12. Find the two rational numbers between $\frac{1}{2}$ and $\frac{1}{3}$
- 13. Prove that 1.101001000100001... is an irrational number.
- 14. Find the values of a and b in each of $\frac{3-\sqrt{5}}{3+2\sqrt{5}}=a\sqrt{5}-\frac{19}{11}$
- 15. If x = 2 + $\sqrt{3}$, find the value of $x^3 + \frac{1}{x^3}$.

CBSE Test Paper 04 CH-1 Number Systems

Solution

1. (c) 8

Explanation:

$$\begin{array}{l} x+\frac{1}{x}=\frac{x^2+1}{x}\\ \text{Now , put x=4-}\sqrt{15}\\ \Rightarrow \frac{(4-\sqrt{15})^2+1}{4-\sqrt{15}}\\ \Rightarrow \frac{16+15-8\sqrt{15}+1}{4-\sqrt{15}}\\ \Rightarrow \frac{32-8\sqrt{15}}{4-\sqrt{15}}\\ \Rightarrow 8 \end{array}$$

 $\Rightarrow 8$ 2. (a) $\frac{6}{5}$

Explanation:

$$\left(\frac{125}{216}\right)^{\frac{-1}{3}}$$

$$\Rightarrow \left(\frac{5}{6}\right)^{3 \times \frac{-1}{3}}$$

$$\Rightarrow \left(\frac{5}{6}\right)^{-1}$$

$$\Rightarrow \frac{6}{5}$$

3. (a) irrational number

Explanation:

$$\sqrt{8}$$
 is an irrational number $\because \sqrt{4 \times 2} = 2\sqrt{2}$

4. (c) $\frac{8}{9}$

Explanation:

$$\begin{array}{l} 16\sqrt{13} \div 9\sqrt{52} \\ \frac{16\sqrt{13}}{9\sqrt{52}} = \frac{16}{9} \times \sqrt{\frac{13}{52}} = \frac{16}{9} \times \frac{1}{2} \\ = \frac{8}{9} \end{array}$$

5. (a) 1

Explanation:

$$x^{a-b} imes x^{b-c} imes x^{c-a}$$
 $\Rightarrow x^{a-b+b-c+c-a}$
 $\Rightarrow x^0$

- 6. 0.8333
- 7. 0.42

8.
$$\frac{2+\sqrt{3}}{2-\sqrt{3}} = \frac{2+\sqrt{3}}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}}$$
$$= \frac{(2+\sqrt{3})^2}{(2)^2 - (\sqrt{3})^2} = \frac{4+3+4\sqrt{3}}{4-3}$$
$$= \frac{7+4\sqrt{3}}{1} = 7+4\sqrt{3}$$

- 9. ... The decimal expansion is terminating.
 - ∴ 0.3796 is a rational number.
- 10. $\sqrt{5}$ is irrational and 2 is rational.
 - $1.5 \sqrt{5}$ 2 is irrational.
 - (: The difference of a rational number and an irrational number is irrational.)
- 11. Consider the definition of a rational number.

A rational number is the one that can be written in the form of $\frac{p}{q}$, where p and q are integers and $q \neq 0$.

Zero can be written as $\frac{0}{1}$, $\frac{0}{2}$, $\frac{0}{3}$, $\frac{0}{4}$, $\frac{0}{5}$

So, we arrive at the conclusion that 0 can be written in form of $\frac{p}{q}$, where q is any integer. Therefore, zero is a rational number.

12. First rational number between $\frac{1}{2}$ and $\frac{1}{3}$ $= \frac{1}{2} \left[\frac{1}{2} + \frac{1}{3} \right] \Rightarrow \frac{1}{2} \left[\frac{3+2}{6} \right] \Rightarrow \frac{5}{12}$

$$= \frac{1}{2} \left[\frac{1}{2} + \frac{1}{3} \right] \Rightarrow \frac{1}{2} \left[\frac{3+2}{6} \right] \Rightarrow \frac{\overline{5}}{12}$$
$$= \frac{1}{2}, \frac{5}{12} \text{ and } \frac{1}{3}$$

Second rational number between $\frac{1}{2}$ and $\frac{1}{3}$

$$=rac{1}{2}\Big[rac{1}{2}+rac{5}{12}\Big] \Rightarrow rac{1}{2}\Big[rac{6+5}{12}\Big] \Rightarrow rac{11}{24}$$

PRERNA EDUCATION CLASS IX

$$=\frac{5}{12}$$
 and $\frac{11}{24}$ are two rational number between $\frac{1}{2}$,and $\frac{1}{3}$

13. We can observe that the number 1.101001000100001.... is a non-terminating on recurring decimal.

We know that non terminating and non-recurring decimals cannot be converted into $\frac{p}{q}$ form.

Therefore, we conclude that 1.101001000100001..... is an irrational number.

14. LHS =
$$\frac{3-\sqrt{5}}{3+2\sqrt{5}} = \frac{3-\sqrt{5}}{3+2\sqrt{5}} \times \frac{3-2\sqrt{5}}{3-2\sqrt{5}}$$

= $\frac{(3-\sqrt{5})(3-2\sqrt{5})}{(3)^2-(2\sqrt{5})^2}$
= $\frac{9-6\sqrt{5}-3\sqrt{5}+10}{9-20} = \frac{19-9\sqrt{5}}{-11}$
Now, $\frac{19-9\sqrt{5}}{-11} = a\sqrt{5} - \frac{19}{11}$
 $\Rightarrow \frac{-19}{11} + \frac{9}{11}\sqrt{5} = a\sqrt{5} - \frac{19}{11}$
 $\Rightarrow \frac{9}{11}\sqrt{5} - \frac{19}{11} = a\sqrt{5} - \frac{19}{11}$
Hence, $a = \frac{19}{11}$.

15. We have,

$$x = 2 + \sqrt{3}$$

$$\therefore \frac{1}{x} = \frac{1}{2 + \sqrt{3}} = \frac{1}{2 + \sqrt{3}} \times \frac{2 - \sqrt{3}}{2 - \sqrt{3}}$$

$$= \frac{2 - \sqrt{3}}{(2 + \sqrt{3})(2 - \sqrt{3})}$$

$$= \frac{2 - \sqrt{3}}{(2)^2 - (\sqrt{3})^2}$$

$$= \frac{2 - \sqrt{3}}{4 - 3} = \frac{2 - \sqrt{3}}{1}$$

$$\Rightarrow \frac{1}{x} = 2 - \sqrt{3}$$

Now,
$$x^3 + \frac{1}{x^3} = (x + \frac{1}{x}) [x^2 - x \times \frac{1}{x} + (\frac{1}{x})^2]$$

$$= (2 + \sqrt{3} + 2 - \sqrt{3}) [(2 + \sqrt{3})^2 - 1 + (2 - \sqrt{3})^2]$$

$$= 4[(2)^2 + (\sqrt{3})^2 + 2 \times 2 \times \sqrt{3} - 1 + (2)^2 + (-\sqrt{3})^2 - 2 \times 2 \times \sqrt{3}]$$

$$= 4[4 + 3 + 4\sqrt{3} - 1 + 4 + 3 - 4\sqrt{3}]$$

$$= 4[13]$$

$$= 52$$