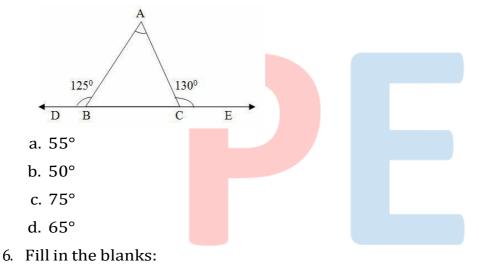
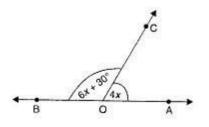

CBSE Test Paper 04 CH-6 Lines and Angles

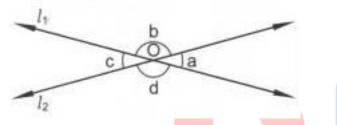

1. In the given figure, the measure of $\angle a$ is:

- d. 50°
- 2. An exterior angle of a triangle is 80° and the interior opposite angles are in the ratio 1
 - : 3. Measure of each inte4rior opposite angle is :
 - a. $30^{0}, 60^{0}$
 - b. $20^{0}, 60^{0}$
 - c. $30^0, 90^0$
 - d. 40^{0} , 120^{0}
- 3. In two interior angles on the same side of a transversal intersecting two parallel lines are in the ratio 5 : 4, then the smaller of the two angles is :
 - a. 120⁰
 b. 60⁰
 c. 100⁰
 d. 80⁰
- 4. In the adjoining figure, the bisectors of \angle CBD and \angle BCE meet at the point O. If \angle BAC = 70°, then \angle BOC is equal to :-

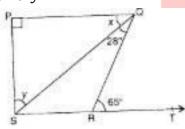
5. Side BC of \triangle ABC has been produced to D on left-hand side and to E on right-hand side such that \angle ABD = 125° and \angle ACE = 130°. Then \angle A = ?

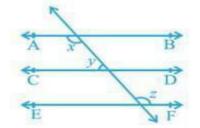


A ray has _____end point.


7. Fill in the blanks:

If two angles of a triangle are complementary, then the type of triangle formed will be ______triangle.


- 8. Find the measure of the complementary angle of 60° .
- 9. Two supplementary angles differ by 34°. Find the angles.
- 10. What value of x would make AOB a line in figure, If $\angle AOC = 4x$ and $\angle BOC = 6x + 30^{\circ}$?


- 11. Find the measure of an angle which is the complement of itself.
- 12. In a $\Delta ABC, \angle A + \angle B = 110^\circ, \angle C + \angle A = 135^\circ.$ Find $\angle A.$
- 13. In Figure, lines l_1 and l_2 intersect at 0, forming angles as shown in the figure. If a = 35° , find the values of b, c, and d.

14. In figure, if PQ \perp PS, PQ || SR, \angle SQR = 28° and \angle QRT = 65°, then find the values of x and y.

15. In the given figure, if AB || CD, CD || EF and y: z = 3: 7, find x.

CBSE Test Paper 04 CH-6 Lines and Angles

Solution

1. (b) 30°

Explanation:

In the given figure

 $150^{\circ} + \angle a = 180^{\circ}$ (linear - pair)

∠a = 180° - 150°

Therefore

∠a = 30°

2. (b) 20⁰, 60

Explanation:

let the common ratio is x the ratio of interior angles are 1 : 3

so angles are x and 3x

x+3 x=80

$$4 x=80$$
$$x = \frac{80}{4}$$

so angles are 20^0 and 60^0

3. (d)80⁰

Explanation: We know that sum of two interior angles on the same side of a

transversal intersecting two parallel lines is 180⁰

let the common ratio is x

so the angles are 5x ,4x

so
$$5x + 4x = 180^{0}$$

 $9x = 180^{0}$

$$x = 180^0/9$$

$$x = 20^0$$

so the angles are $5x = 100^{\circ}$

 $4x = 80^{0}$

so smallest angle is 80^0

4. (b) 55°

Explanation:

 $\angle BOC = 90^\circ - \frac{1}{2} \angle BAC$ $\angle BOC = 90^\circ - 35^\circ = 55^\circ$

5. (c) 75°

Explanation:

 $\angle ABD + \angle ABC = 180^{\circ}$ (Linear Pair) $\angle ABC = 180^{\circ} \cdot 125^{\circ} = 55^{\circ}$ $\angle ACE + \angle ACB = 180^{\circ}$ (Linear Pair) $\angle ACB = 180^{\circ} \cdot 130^{\circ} = 50^{\circ}$ In $\triangle ABC$ $\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$ (Angle sum property) $\angle BAC = 180^{\circ} \cdot 50^{\circ} \cdot 55^{\circ}$ $\angle BAC = 75^{\circ}$

- 6. only one
- 7. right-angled
- 8. The measure of the complementary angle $x = (90^{\circ} r^{\circ})$

Where r^{o} = given measurement

 $\therefore x = (90^{\circ} - 60^{\circ}) = 30^{\circ}$

9. Let one angle be x°. Then, the other angle is (x + 34)°.
It is given that x° and (x + 34)° are supplementary angles.
∴ x + (x + 34) = 180

$$\Rightarrow$$
 2x + 34 = 180

 $\Rightarrow 2x = 180 - 34 \Rightarrow 2x = 146 \Rightarrow x = 73$

Thus, two angles are of measures 73° and 107°.

10. If AOB is a line, then

 $\angle AOB = 180^{\circ} \dots [A \text{ straight line} = 180^{\circ}]$ $\angle AOC + \angle BOC = 180^{\circ}$ $\therefore 4x + (6x + 30^{\circ}) = 180^{\circ}$ $\therefore 10x + 30^{\circ} = 180^{\circ}$ $\therefore 10x = 180^{\circ} - 30^{\circ}$ $\therefore 10x = 150^{\circ}$ $\therefore x = \frac{150^{\circ}}{10} = 15^{\circ}$

11. Let the measure of the angle be x°.

The measure of its complement is given to be x°.

Since the sum of the measures of an angle and its complement is 90°

 $x + x = 90^{\circ} \Rightarrow 2x \Rightarrow x = 45^{\circ}$

12. Given
$$\angle A + \angle B = 110^{\circ}$$
....(1)

and, $\angle C + \angle A = 135^{\circ}$(2)

Also we know that, in $\triangle ABC$, $\angle A + \angle B + \angle C = 180^{\circ}$(3) On adding (1) & (2), we get :- $\angle A + \angle B + \angle C + \angle A = 110^{\circ} + 135^{\circ}$ $\Rightarrow 180^{\circ} + \angle A = 245^{\circ}$ [from (3)] $\Rightarrow \angle A = 245^{\circ} - 180^{\circ} = 65^{\circ}$

13. Since lines l_1 and l_2 intersect at 0.

 $\therefore \angle a = \angle c \text{ [Vertically opposite angles]}$ $\Rightarrow \angle c = 35^{\circ} \text{ [} \therefore \angle a = 35^{\circ} \text{]}$ Clearly, $\angle a + \angle b = 180^{\circ} \text{ [Since } \angle a \text{ and } \angle b \text{ are angles of a linear pair]}$ $\Rightarrow 35^{\circ} + \angle b = 180^{\circ}$ $\Rightarrow \angle b = 180^{\circ} - 35^{\circ}$ $\Rightarrow \angle b = 145^{\circ}$

Since \angle b and \angle d are vertically opposite angles,

 $\therefore \angle d = \angle b \Rightarrow \angle d = 145^{\circ} [\because \angle b = 145^{\circ}]$

CLASS IX

Hence, $b = 145^{\circ}$, $c = 35^{\circ}$ and $d = 145^{\circ}$

14. \angle QRT = \angle RQS + \angle QSR . . . [Sum of two interior opposite angles equal to exterior angle]

 $\therefore 65^{\circ} = 28^{\circ} + \angle QSR$ $\therefore \angle QSR = 65^{\circ} - 28^{\circ} = 37^{\circ}$ $\angle QPS = 90^{\circ} \dots [PQ \perp SP]$ $\angle QPS = 90^{\circ}$ As PQ || SR

 $\therefore \angle QPS + \angle PSR = 180^{\circ} \dots$ [sum of consecutive interior angles on the same side of transversal]

$$\therefore 90^{\circ} + \angle PSR = 180^{\circ}$$

$$\therefore \angle PSR = 180^{\circ} - 90^{\circ} = 90^{\circ}$$

$$\angle PSR + \angle QSR = 90^{\circ}$$

$$\therefore y + 37^{\circ} = 90^{\circ}$$

$$\therefore y = 90^{\circ} - 37^{\circ} = 53^{\circ}$$

In PQS,

$$\angle PQS + \angle QSP + \angle QPS = 180^{\circ} \dots$$
 [Sum of all the angles of a triangle]

$$\therefore x + y + 90^{\circ} = 180^{\circ}$$

$$\therefore x + 53^{\circ} + 90^{\circ} = 180^{\circ}$$

$$\therefore x + 143^{\circ} = 180^{\circ}$$

$$\therefore x = 180^{\circ} - 143^{\circ} = 37^{\circ}$$

15. We are given that $AB \parallel CD, CD \parallel EF$ and y: z = 3:7

We need to find the value of x in the figure given below.

We know that lines parallel to the same line are also parallel to each other.

We can conclude that $AB \parallel EF$

Let y = 3a and z = 7a

We know that angles on the same side of a transversal are supplementary.

 $\therefore x + y = 180^{\circ}$

x = z Alternate interior angles

$$egin{array}{ll} z+y&=180^\circ\ {
m or}\;7a+3a&=180^\circ\ {
m or}\;7a+3a&=180^\circ\ {
m a}=18^\circ.\ z&=7a&=126^\circ\ y&=3a&=54^\circ.\ {
m Now,}\,{
m as}\;x=z\ {
m =>}\;x=126^\circ\,. \end{array}$$

Therefore, we can conclude that $x=126^\circ$

