CBSE Test Paper 03 CH-6 Lines and Angles

- 1. The sum of all the angles of a quadrilateral is :
 - a. 180⁰
 - b. 360⁰
 - c. 400⁰
 - d. 320⁰
- 2. If two supplementary angles are in the ratio 2 : 7, then the angles are :
 - a. 35^{0} , 145^{0} b. 70^{0} , 110^{0}
 - b.70,110
 - c. 40° , 140°
 - d. 50^{0} , 130^{0}
- 3. If two lines intersect each other then
 - a. Corresponding an<mark>gles are equal</mark>
 - b. Alternate interior angles are equal
 - c. Co-interior angles are equal
 - d. Vertically opposite angles are equal
- 4. Measurement of reflex angle is
 - a. between $0^\circ \mbox{ and } 90^\circ$
 - b. 90°
 - c. between 180° and 360°
 - d. between 90° and 180°
- 5. In the adjoining figure $\angle QPR = 62^{\circ}$ and $\angle PRQ = 64^{\circ}$. If OQ and OR and bisectors of $\angle PQR$ and $\angle PRQ$ respectively, then $\angle OQR$ and $\angle QOR$:-

a. 121°, 20°

b. 27°, 121°

c. 20°, 80°

- d. 26°, 124°
- 6. Fill in the blanks:

If one angle of a triangle is equal to the sum of the other two, then triangle is a/an _____triangle.

7. Fill in the blanks:

If the ratio between two complementary angles are 2 : 3, then the angles are _____ and _____.

- 8. Find the measure of the complementary angle of 25° .
- 9. For what value of x + y in Fig., will ABC be a line?

10. In Fig., AB II CF and BC II ED. Prove that $\angle ABC = \angle FDE$.

- 11. Prove that if a transversal intersect two parallel lines, then each pair of alternate interior angles is equal.
- 12. What value of x would make AOB a line if $\angle AOC = 4x$ and $\angle BOC = 6x + 30^\circ$.

13. In figure, $\angle x = 62^{\circ}$, $\angle XYZ = 54^{\circ}$. If YO and ZO are the bisectors of $\angle XYZ$ and $\angle XZY$ respectively of DXYZ, find $\angle OZY$ and $\angle YOZ$.

14. In figure, a is greater than b by one third of a right angle. Find the values of a and b.

15. In figure, $\angle ABC = 65^{\circ}$, $\angle BCE = 30^{\circ}$, $\angle DCE = 35^{\circ}$ and $\angle CFE = 145^{\circ}$. Prove that AB || EF.

CBSE Test Paper 03 CH-6 Lines and Angles

Solution

1. (b)360⁰

Explanation: Sum of the angles of a polygon = (n-2)* 180 Quadrilateral has 4 sides,

```
So sum of interior angles = (4-2)^* 180^0 = 360
```

2. (c) 40[°], 140

Explanation:

We know that supplementary angles are those angles whose sum is 180°

The two given supplementary angles are in the ratio 2 : 7

Let the commom ratio be x

So angles are 2x and 7x respectively $2x + 7x = 180^{0}$ $9x = 180^{\circ}$ $x = \frac{180^{\circ}}{9} = 20^{\circ}$ $2x = 2 \times 40^{0} = 40^{0}$ $7x = 7 \times 20^{0} = 140^{0}$

 (d) Vertically opposite angles are equal Explanation:

 $\angle B + \angle C = 180$ (Linear Pair) On equating above equations, we get $\angle A + \angle B = \angle B + \angle C$ $\angle A = \angle C$ Similarly, $\angle B = \angle D$

4. (c) between 180° and 360°

Explanation: Let x be the angle

then its reflex angle is $360^0 - x$

and in any triangle the angle lies between 0 to 180^0

5. (b) 27°, 121°

Explanation:

In \triangle PQR \angle QPR + \angle PQR + \angle PRQ = 180° (Angle sum property) \angle PQR = 180° - 62° - 64° \angle PQR = 54° \angle ORQ = 32° (OR is a bisector) \angle OQR = 27° (OQ is a bisector) In \triangle OQR \angle QQR + \angle ORQ + \angle QOR = 180° (Angle sum property) \angle QOR = 180° - 32° - 27° = 121°

6. right-angled

```
7. 36<sup>°</sup>, 54<sup>°</sup>
```

8. The measure of the complementary angle $x = (90^{\circ} - r^{\circ})$ Where, r° = given measurement

 $\therefore x = (90^{\circ} - 25^{\circ}) = 65^{\circ}$

hence, the measure of the complementary angle of 25° = 65°

- 9. For ABC to be a line, the sum of two adjacent angles must be $180^\circ\,$ i.e., x + y must be equal to $180^\circ\,$.
- 10. We have,

AB || CF ...(i) $\Rightarrow \angle ABC = \angle BCF$ [Alternate $\angle s$] ...(ii) Also, BC || ED [Given] $\Rightarrow \angle BCF = \angle FDE$ [Corresponding $\angle s$] ...(iii) From (i) and (ii) we get $\angle ABC = \angle FDE$

11. Given: line AB||CD intersected by transversal PQ To Prove:

Proof: $\angle 1 = \angle 2$ (i) [Vertically Opposite angle] $\angle 1 = \angle 5$ (ii) [Corresponding angles]

By (i) and (ii) $\angle 2 = \angle 5$ Similarly, $\angle 3 = \angle 4$ Hence Proved

- i. $\angle 2 = \angle 5$ ii. $\angle 3 = \angle 4$
- 12. Given $\angle AOC = 4x$ and $\angle BOC = 6x + 30^{\circ}$ $\angle AOC + \angle BOC = 180^{\circ}$ (By linear pair) $\Rightarrow 4x + 6x + 30^{\circ} = 180^{\circ}$ $\Rightarrow 10x = 180^{\circ} - 30^{\circ}$

$$\Rightarrow 10x = 150^{\circ}$$
$$\Rightarrow x = 15^{\circ}$$

13. In DXYZ,

 \angle XYZ + \angle YZX + \angle ZXY = 180^o [Sum of all angles of a triangle] $\therefore 54^{\circ} + \angle YZX + 62^{\circ} = 180^{\circ}$ $...116^{\circ} + / YZX = 180^{\circ}$ $\therefore \angle YZX = 180^{\circ} - 116^{\circ} = 64^{\circ} \dots (1)$ As YO bisects ∠XYZ $\angle XYO = \angle OYZ = \frac{1}{2} \angle XYZ = \frac{1}{2} (54^{\circ}) = 27^{\circ} \dots (2)$ As ZO bisects \angle YZX $\angle XZO = \angle OZY = \frac{1}{2} \angle YZX = \frac{1}{2} (64^{\circ}) = 32^{\circ} \dots [Using (1)] \dots (3)$ In DOYZ $\angle OYZ + \angle OZY + \angle YOZ = 180^{\circ \dots}$ [Sum of all angles of a triangle] $\therefore 27^{\circ} + 32^{\circ} + \angle YOZ = \frac{180^{\circ}}{180^{\circ}} [U_{sing}(2) \text{ and } (3)]$ $...59^{\circ} + ...4702 = 180^{\circ}$ $\therefore \angle YOZ = 180^{\circ} - 59^{\circ} = 121^{\circ}$ 14. $a + b = 180^{\circ} \dots [Linear Pair Axiom] \dots (1)$ a = b $+\frac{1}{3}$ (a right angle)..... [Given] $a=b+rac{1}{3}(90^0).\ldots$ [right angle = 90°] $a + b = 30^{\circ}$ $a - b = 30^{\circ} \dots (2)$ $2a = 180^{\circ} + 30^{\circ}$ [Adding (1) and (2)] $\therefore 2a = 210^{\circ}$ $\therefore a = \frac{210^0}{2} = 105^0$ $2b = 180^{\circ} - 30^{\circ}$ [Subtracting (2) from (1)] $2b = 150^{\circ}$ $\therefore b = \frac{150^0}{2} = 75^0$

 $\angle ABC = 65^{\circ}$

 \angle BCD = \angle BCE + \angle ECD = 30^o + 35^o = 65^o

∴ ∠ABC = ∠BCD

These angles form a pair of equal alternate angles

: AB || CD ... (1)

 \angle FEC + \angle ECD = 145° + 35° = 180°

These angles are consecutive interior angles formed on the same side of the transversal.

∴ CD || EF...... (2) AB || EF...... [From (1) and (2)]