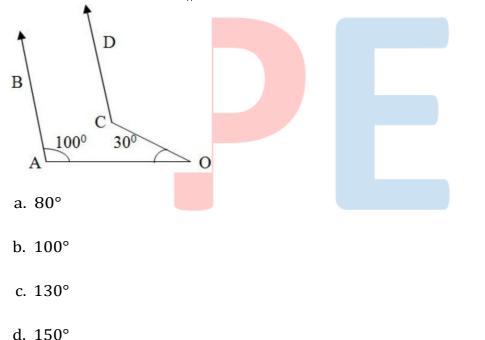
CBSE Test Paper 02 CH-6 Lines and Angles

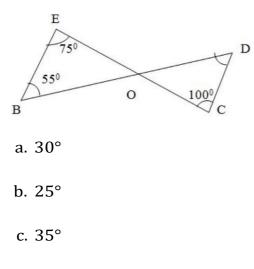
- 1. The number of angles formed by a transversal with a pair of parallel lines are
 - a. 8
 - b. 4
 - c. 6
 - d. 3
- 2. In the given figure, AB || CD. If $\angle AOC = 30^{\circ}$ and $\angle OAB = 100^{\circ}$. then $\angle OCD = ?$



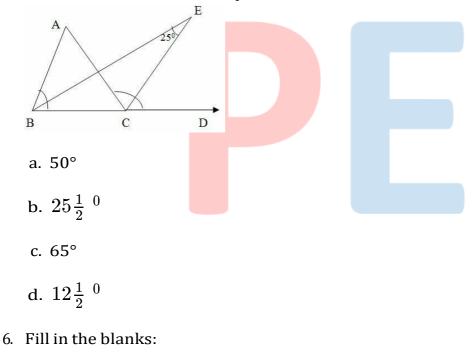
3. If two angles are supplementary and the larger is 20^{0} less then three times the smaller, then the angles are :-

a.
$$72\frac{1}{2}$$
⁰, $17\frac{1}{2}$ ⁰
b. 140^{0} , 40^{0}
c. 130^{0} , 50^{0}
d. $62\frac{1}{2}$ ⁰, $27\frac{1}{2}$ ⁰

4. In the given figure, $\angle OEB = 75^\circ$, $\angle OBE = 55^\circ$ and $\angle OCD = 100^\circ$. Then $\angle ODC = ?$



- d. 20°
- 5. In the adjoining figure, BE and CE are bisectors of \angle ABC and \angle ACD respectively. If \angle BEC = 25°, then \angle BAC is equal to :-



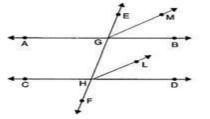
A line segment has _____end points.

7. Fill in the blanks:

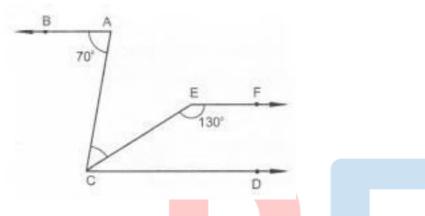
A line has _____end point.

- 8. An angle is equal to five times its complement. Determine its measure.
- 9. Two supplementary angles are in the ratio 2 : 3. Find the angles.

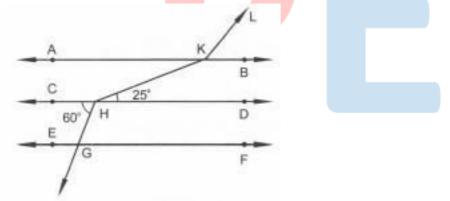
10. If two lines are intersected by a transversal in such a way that the bisectors of a pair of corresponding angles are parallel, then prove that lines are parallel.



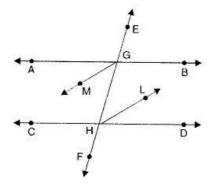
11. In Figure, if AB II CD and CD II EF, find \angle ACE.



12. In figure, AB || CD || EF and GH || KL. Find ∠HKL.



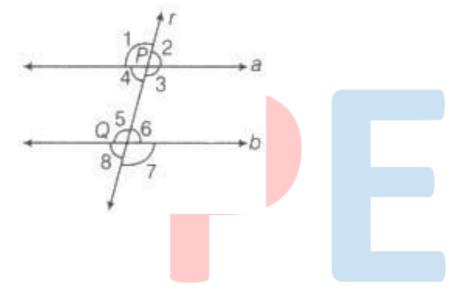
13. If two parallel lines are intersected by a transversal, then prove that the bisectors of any two alternate angles are parallel.



14. In Fig., AB || CD and $\angle 1$ and $\angle 2$ are in the ratio 3 : 2. Determine all angles from 1 to 8.



15. In the given figure, if $\angle 2 = 120^{\circ}$ and $\angle 5 = 60^{\circ}$, then show that a \parallel b.

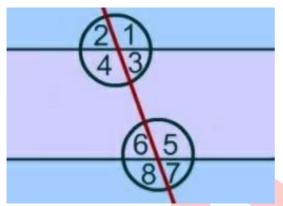


CBSE Test Paper 02 CH-6 Lines and Angles

Solution

1. (a) 8

Explanation:



As we can see there are 4 angles formed at every point of intersection thus giving a total of 8 angles.

2. (c) 130°

Explanation:

Extend line CD which intersect AO at M.

```
\angleCMO = \angle BAO = 100° (Corresponding angle)
```

 $In \bigtriangleup MOC$

```
\angleMOC + \angleCMO = \angleDCO ( exterior angle is equal to the sum of two opposite interior angles)
```

 $\angle DCO = 100^{\circ} + 30^{\circ} = 130^{\circ}$

3. (c) 130^{0} , 50^{0} Explanation:

Let the two supplimentary angles be x^0 and 180^0 - x^0

Let 180^0 - x be the larger angle

 $180^0 - x = 3x - 20^0$

 $4x = 200^{0}$

 $x = 50^{0}$

So the angles are 50^0 and 130^0

4. (a) 30°

Explanation:

In \triangle OEB \angle OEB + \angle EBO + \angle BOE = 180° (Angle sum property) 75° + 55° + \angle BOE = 180° \angle BOE = 50° \angle BOE = \angle COD = 50° (Vertically opposite angle) In \triangle ODC \angle ODC + \angle DOC + \angle DCO = 180° \angle ODC = 180° - 100° - 50° \angle ODC = 30°

5. (a) 50°

Explanation:

In \triangle BEC

 $\angle BEC + EBC = \angle ECD \text{ (Exterior angle property)}$ $\angle BEC = ECD - \angle EBC$ In $\triangle ABC$ $\angle ABC + BAC = ACD$ $\angle ABC + 2\angle EBC = 2\angle ECD$ $\angle ABC = 2(\angle ECD - \angle EBC)$ $\angle ABC = 2(\angle BEC)$ $\angle ABC = 50^{\circ}$

- 6. two
- 7. no
- Let the measure of the given angle be x degrees. Then, the measure of its complement is (90 - x)°.

It is given that:

Angle = 5 \times Its complement

 \Rightarrow x = 5(90 - x)

 $\Rightarrow x = 450 - 5x \Rightarrow 6x = 450 \Rightarrow x = 75$

Thus, the measure of the given angle is 75°

9. Let the two angles be 2x and 3x in degrees. Then,

 $\therefore 2x + 3x = 180$ $\Rightarrow 5x = 180 \Rightarrow x = 36$

Thus, the measures of two angles are $2x = 2 \times 36^\circ = 72^\circ$ and $3x = 3 \times 36^\circ = 108^\circ$.

10. GM || HL [Given]

∴ ∠EGM = ∠GHL [Corresponding angles]

 $\therefore 2\angle EGM = 2\angle GHL$

 \therefore \angle EGB = \angle GHD ... [GM bisects the \angle EGB and HL bisects the \angle GHD]

These angles form a pair of equal corresponding angles for lines AB and CD and transversal EF.

: AB || CD

11. Since EF || CD

 $\therefore \angle FEC + \angle ECD = 180^{\circ}$ [co-interior angles are supplementary]

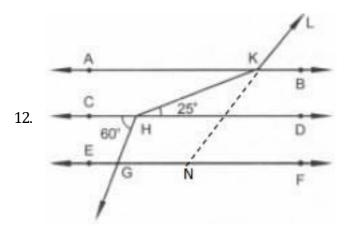
 $\Rightarrow \angle ECD = 180^{\circ} - 130^{\circ} = 50^{\circ}$

Also BA || CD

 $\Rightarrow \angle BAC = \angle ACD = 70^{\circ}$ [alternate interior angles]

But $\angle ACE + \angle ECD = \angle ACD = 70^{\circ}$

 $\Rightarrow \angle ACE = 70^{\circ} - 50^{\circ} = 20^{\circ}$



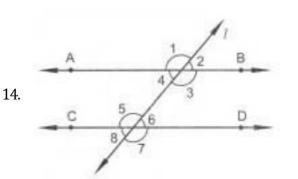
Produce LK to meet GF at N. Now,

 $\angle CHG = \angle HGN = 60^{\circ} \text{ [alternate angles]}$ $\angle HGN = \angle KNF = 60^{\circ} \text{ [corresponding angles]}$ $\therefore \angle KNG = 180^{\circ} - 60^{\circ} = 120^{\circ} \text{ [linear pair]}$ $\angle GNK = \angle AKL = 120^{\circ} \text{ [corresponding angles]}$ $\angle AKH = \angle KHD = 25^{\circ} \text{ [alternate angles]}$ $\therefore \angle HKL = \angle AKH + \angle AKL = 25^{\circ} + 120^{\circ} = 145^{\circ}$

AB || CD and a transversal EF intersects them

 $\therefore \angle AGH = \angle GHD$ $\frac{1}{2} \angle AGH = \frac{1}{2} \angle GHD$ $\angle MGH = GHL...... [As GM bisects the \angle AGH and HL bisects the \angle GHD]$

13.



Given In Fig., AB || CD and $\angle 1$ and $\angle 2$ are in the ratio 3 : 2. To find: All angles from 1 to 8. Solution: Let $\angle 1 = 3x$, $\angle 2 = 2x$ [Given] Now, $\angle 1 + \angle 2 = 180^{\circ}$ [linear pair] \Rightarrow 3x + 2x = 180° \Rightarrow 5x = 180° \Rightarrow x = 36^o $\therefore \angle 1 = 3x = 108^{\circ} \text{ and } \angle 2 = 2x = 72^{\circ}$ $\angle 1 = \angle 3 = 108^{\circ}$ [vertically opposite angles] $\angle 2 = \angle 4 = 72^{\circ}$ [vertically opposite angles] $\angle 1 = \angle 5 = 108^{\circ}$ [corresponding angles] $\angle 2 = \angle 6 = 72^{\circ}$ [corresponding angles] $\angle 5 = \angle 7 = 108^{\circ}$ [vertically opposite angles] $\angle 6 = \angle 8 = 72^{\circ}$ [vertically opposite angles] Hence, $\angle 1 = \angle 3 = \angle 5 = \angle 7 = 108^{\circ}$ and $2 = 4 = 6 = 8 = 72^{\circ}$

15. Given,
$$\angle 2 = 120^{\circ}$$
 and $\angle 5 = 60^{\circ}$
Also, transversal r intersects two lines a and b at P and Q, respectively.
Here, $\angle 2 = \angle 4$ [vertically opposite angles]
 $\therefore \angle 4 = \angle 2 = 120^{\circ}$
Now, $\angle 4 + \angle 5 = 120^{\circ} + 60^{\circ} \Rightarrow \angle 4 + \angle 5 = 180^{\circ}$
So, $\angle 4$ and $\angle 5$ are supplementary angles.
Since, a is a straight line.

 $\therefore \angle 4 + \angle 3 = 180^{\circ}$ [by linear pair axiom]

$$\Rightarrow$$
 120° + \angle 3 = 180°

 $\Rightarrow \angle 3 = 180^{\circ} - 120^{\circ} = 60^{\circ}$

Now, $\angle 7 = \angle 5 = 60^{\circ}$ [vertically opposite angles]

Here, $\angle 7 + \angle 8 = 180^{\circ}$ [by linear pair axiom]

$$\therefore 60^{\circ} + \angle 8 = 180^{\circ}$$

$$\Rightarrow \angle 8 = 180^{\circ} - 60^{\circ} = 120^{\circ}$$

 $\therefore \angle 6 = \angle 8 = 120^{\circ}$ [vertically opposite angles]

 $\therefore \angle 3 + \angle 6 = 60^{\circ} + 120^{\circ} = 180^{\circ}$

So, $\angle 3$ and $\angle 6$ are supplementary angles.

Thus, transversal r intersects lines a and b such that pair of interior angles on the same side of the transversal is supplementary. Hence, lines a and b are parallel. **Hence proved.**

