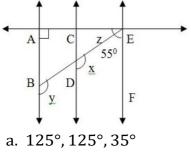
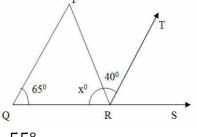
CBSE Test Paper 01 CH-6 Lines and Angles

1. In the adjoining figure, AB \parallel CD and AB \parallel EF. If EA \perp BA and \angle BEF = 55°, then the values of x, y and z :-

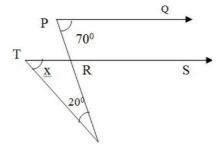


- b. 60°, 60°, 60°
- c. 120°, 130°, 25°
- d. 35°, 125°, 120°
- 2. If one angle of a triangle is equal to the sum of the other two angles, then the triangle is :
 - a. an isosceles triang<mark>le</mark>
 - b. an equilateral tria<mark>ngle</mark>
 - c. a right triangle
 - d. an obtuse angled triangle
- 3. In the adjoining figure, if QP \parallel RT, then x is equal to –



- a. 55°
- b. 75°
- c. 65°
- d. 70°
- 4. The number of lines that can pass through a given point is:
 - a. only one
 - b. two

- c. one
- d. Infinity
- 5. In figure, PQ || RS, \angle QPR = 70°, \angle ROT = 20° find the value of x.



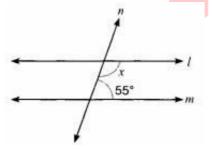
- a. 20°
- b. 70°
- c. 50°
- d. 110°
- 6. Fill in the blanks:

An equation of the type_____represents a straight line passing through the origin.

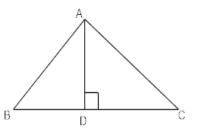
7. Fill in the blanks:

The common between the three angles of a triangle and a linear pair is______.

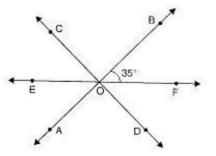
8. In Fig., find the value of x for which the lines l and m are parallel.



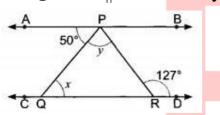
- 9. Find the measure of the complementary angle of 60° .
- 10. In the given figure \triangle ABC is right angled at A. AD is drawn perpendicular to BC. Prove that $\angle BAD = \angle ACB$



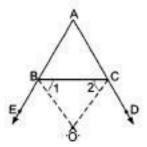
- 11. Prove that if one angle of a triangle is equal to the sum of other two angles, then the triangle is right angled.
- 12. The exterior angle of a triangle is 110° and one of the interior opposite angle is 35°.Find the other two angles of the triangle.
- 13. AB, CD and EF are three concurrent lines passing through the point O such that OF bisects \angle BOD. If \angle BOF = 35°. Find \angle BOC and \angle AOD.



14. In Fig., if $AB \| CD$, $\angle APQ = 50^{\circ}$ and $\angle PRD = 127^{\circ}$, find x and y.



15. In \triangle ABC in given figure, the sides AB and AC of \triangle ABC are produced to points E and D respectively. If bisectors BO and CO of \angle CBE and \angle BCD respectively meet at point O, then prove that \angle BOC = 90° - $\frac{1}{2} \angle$ A.



CBSE Test Paper 01 CH-6 Lines and Angles

Solution

1. (a) 125°, 125°, 35°

Explanation: x + 55 = 180° (Sum of supplementary angles or co-interior angles)

x = 125°

x = y = 125° (Corresponding angles)

```
z + ∠EAB = y (Exterior angle property)
```

 $z = 125^{\circ} - 90^{\circ} = 35^{\circ}$

2. (c) a right triangle

Explanation: The sum of the angles of triangle is 180 degrees.

let the angles of triangle be a , b, c

we have given that one angle of a triangle is equal to the sum of the other two angles so we have

```
c=a + b
```

```
a + b + c = 180
```

```
Substitute c for a +b
```

$$c + c = 180$$

therefore the triangle is a right triangle.

3. (b) 75°

Explanation:

 \angle QPR = \angle PRT = 40° (Alternate interior angles)

In $\triangle QPR$

 \angle PQR + \angle QPR + \angle PRQ = 180° (Angle sum property)

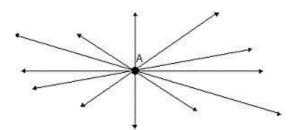
 $65^{\circ} + 40^{\circ} + x^{\circ} = 180^{\circ}$

$$x^{\circ} = 180^{\circ} - 40^{\circ} - 65^{\circ}$$

x° = 75

4. (d) Infinity

Explanation:



As seen from the above image, any number of lines can be drawn through a given point.

Hence the answer may be given as "Infinity".

5. (c) 50°

Explanation:

PQ || RS $\angle QPR = \angle SRO = 70^{\circ}$ (Corresponding, Angle) NOW IN $\triangle RTO$ $x + 20^{\circ} = 70^{\circ}$ (exterior angle) $x = 70^{\circ} - 20^{\circ}$ $x = 50^{\circ}$ 6. y = mx

- 7. 180^o
- 8. Two lines are parallel when angles on the same side of the transversal are supplementary i.e.,

 $x+55^\circ=180^\circ \Rightarrow x=180^\circ-55^\circ \Rightarrow x=125^\circ$

9. The measure of the complementary angle $x = (90^{\circ} - r^{\circ})$

Where r^{o} = given measurement

$$\therefore x = (90^{\circ} - 60^{\circ}) = 30^{\circ}$$

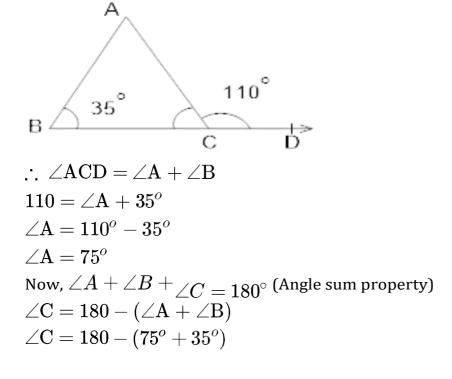
10. $\therefore AD \perp BC$ $\therefore \angle ADB = \angle ADC = 90^{0}$ from $\triangle ABD$ $\angle ABD + \angle BAD + \angle ADB = 180^{0}$ $\angle ABD + \angle BAD + 90^{0} = 180^{0}$ $\angle ABD + \angle BAD = 90^{0}$ $\angle BAD = 90^{\circ} - \angle ABD ..(i)$ But $\angle A + \angle B + \angle C = 180^{\circ} \triangle ABC$ $\angle B + \angle C = 90^{0} \because \angle A = 90^{0}$ $\angle C = 90^{\circ} - \angle B ...(ii)$ From (i) and (ii) $\angle BAD = \angle C$ $\angle BAD = \angle ACB$ Hence proved

11. Given in $\Delta ABC \angle B = \angle A + \angle C$

Proof: $\angle A + \angle B + \angle C = 180^{\circ}$ (1) [Sum of three angles of a \triangle ABC is 180°] $\angle A + \angle C = \angle B$ (2) From (1) and (2) $\angle B + \angle B = 180^{\circ}$ $\angle B = 90^{\circ}$

Hence, the triangle is <mark>a right angled triangle</mark>.

12. Since the exterior angle of a triangle is equal to the sum of interior opposite angles.



$$\angle C = 70^{\circ}$$
13.

$$\int_{E} \int_{D} \int_$$

14. As
$$AB || CD$$
 and PQ is a transversal.
 $\therefore \angle APQ = \angle PQR$ (Alternate interior angles)
 $\Rightarrow 50^{\circ} = x$ (1)
Also, $\angle APR = \angle PRD$ (Alternate interior angles).
 $\Rightarrow \angle APQ + \angle QPR = 127^{\circ}$
 $\Rightarrow x + y = 127^{\circ}$
 $\Rightarrow 50^{\circ} + y = 127^{\circ}$. [From (1)]
or, y = 127^{\circ} - 50^{\circ} = 77^{\circ}
Hence, x = 50° & y = 77°

15. As $\angle ABC$ and $\angle CBE$ form a linear pair $\therefore \angle ABC + \angle CBE = 180^{\circ}....(1)$ Given, BO is the bisector of $\angle CBE$. Hence, $\angle CBE = 2 \angle OBC$.

$$\Rightarrow \angle CBE = 2\angle 1.....(2)$$
Therefore, $\angle ABC + 2\angle 1 = 180^{\circ} [\text{ from } (1) \& (2)]$

$$\Rightarrow 2\angle 1 = 180^{\circ} \cdot \angle ABC$$

$$\Rightarrow 2\angle 1 = 90^{\circ} \cdot \frac{1}{2} \angle ABC.....(3)$$
Again, $\angle ACB$ and $\angle BCD$ form a linear pair

$$\therefore \angle ACB + \angle BCD = 180^{\circ} \dots (4)$$
Given, C0 is the bisector of $\angle BCD$. Hence,
 $\angle BCD = 2\angle 2 \dots (5)$
So, $\angle ACB + 2\angle 2 = 180^{\circ} [\text{ from } (4) \& (5)]$

$$\Rightarrow 2\angle 2 = 180^{\circ} - \angle ACB$$

$$\Rightarrow \angle 2 = 90^{\circ} - \frac{1}{2} \angle ACB \dots (6)$$
Now in $\triangle OBC$, we have
 $\angle 1 + \angle 2 + \angle BOC = 180^{\circ} (\text{Angle sum property of triangle}) \dots (7)$
From (3), (6) and (7), we have
 $90^{\circ} - \frac{1}{2} \angle ABC + 90^{\circ} - \frac{1}{2} \angle ACB + \angle BOC = 180^{\circ}$.
 $\Rightarrow \angle BOC = \frac{1}{2} (\angle ABC + \angle ACB) \dots (8)$
Now, in $\triangle ABC$, we have

∠BAC + ∠ABC + ∠AC<mark>B = 18</mark>0°

or, ∠ABC + ∠ACB = 180° - ∠BAC.....(9)

From (8) and (9), we have:- $\Rightarrow \angle BOC = \frac{1}{2} (180^\circ - \angle BAC)$ Hence, $\angle BOC = 90^\circ - \frac{1}{2} \angle A$ Proved.