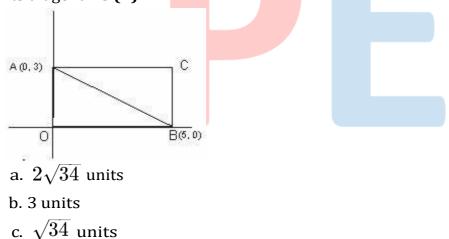
CBSE Test Paper 05

Chapter 7 Coordinate Geometry

- **1.** The distance of the point (-5, 12) from the y-axis is **(1)**
 - a. 12 units
 - b. 5 units
 - c. 13 units
 - d. -5 units
- 2. The perimeter of a triangle with vertices (0, 4), (0, 0) and (3, 0) is (1)
 - a. 15 units
 - b. 10 units
 - c. 9 units
 - d. 12 units
- **3.** AOBC is a rectangle whose three vertices are A(0, 3), O(0, 0) and B(5, 0). The length of its diagonal is **(1)**



- d. 4 units
- **4.** A circle has its centre at the origin and a point P(5, 0) lies on it. Then the point Q(8, 6)

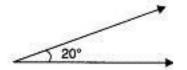
lies_____the circle. (1)

- a. in side
- b. out side

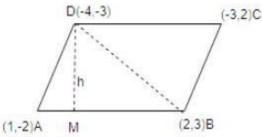
c. on

- d. None of these
- 5. The point where the medians of a triangle meet is called the _____ of the triangle (1)
 - a. circumcentre

- b. centroid
- c. orthocentre
- d. None of these
- **6.** Find the points X-axis which are at a distance of $2\sqrt{5}$ from the point(7,-4). How many such points are there? **(1)**
- 7. Find the coordinates of the midpoint of the line segment joining A(3, 0) and B(-5, 4).(1)
- 8. Find the complement of the given angle. (1)



- **9.** Find the distance between the points A and B in A(5, -8), B (-7, -3) (1)
- **10.** Find the distance between the following pairs of points: (a, b), (-a, -b) (1)
- **11.** Find the distance of the point P(6, -6) from the origin. **(2)**
- **12.** Find the distance between the points P(-6, 7) and Q(-1, -5). (2)
- **13.** In what ratio does the point C(4, 5) divide the join of A(2, 3) and B(7, 8)? (2)
- 14. Show that quadrilateral PQRS formed by vertices P(22,5), Q(7,10), R(12,11) and S(3,24) is not a parallelogram. (3)
- 15. Find the coordinates of points which trisect the line segment joining (1, -2) and (-3, 4).(3)
- 16. Find the value(s) of p, if the points A(2, 3), B(4, k), C(6, 3) are collinear. (3)
- 17. Show that the points A (2,-2), B(14,10), C (11, 13) and D(-1, 1) are the vertices of a rectangle. (3)
- 18. Find the coordinates of the points which divide the line segment joining A(-2, 2) and B(2, 8) into four equal parts. (4)
- 19. If the points A(1,-2), B(2,3), C(-3,2) and D(-4,-4) are the vertices of the parallelogram ABCD, then taking AB as the base, find the height of the parallelogram. (4)



20. Find the area of the triangle whose sides are along the lines x = 2, y = 0 and 4x + 5y = 0

CBSE Test Paper 05

Chapter 7 Coordinate Geometry

Solution

1. b. 5 units

Explanation: The distance of any point from y-axis is its abscissa. Therefore, the required distance is 5 units.

2. d. 12 units

Explanation: Given: the vertices of a triangle ABC, A(0, 4), B (0, 0) and C (3, 0).

:. Perimeter of triangle ABC = AB + BC + AC
=
$$\sqrt{(0-0)^2 + (0-4)^2} + \sqrt{0-3} + (0-0)^2 + \sqrt{0-3} + (4-0)^2$$

= $\sqrt{0+16} + \sqrt{9+0} + \sqrt{9+16}$
= $\sqrt{16} + \sqrt{9} + \sqrt{25}$
= 4 + 3 + 5 = 12 units

3. c. $\sqrt{34}$ units

Explanation: In rectangle AOBC, AB is a diagonal.

: AB =
$$\sqrt{(5-0)^2 + (0-3)^2}$$

= $\sqrt{25+9} = \sqrt{34}$ units

4. b. out side

Explanation: Given: Coordinates of centre O (0, 0) and Radius is OP.

$$\therefore OP = \sqrt{(5-0)^2 + (0-0)^2}$$

= $\sqrt{25+0} = \sqrt{25} = 5$ units
Now, $OQ = \sqrt{(8-0)^2 + (6-0)^2} = \sqrt{64+36} = \sqrt{100} = 10$ units
Since $OQ > OP$

Therefore, point Q lies outside the circle.

5. b. centroid

Explanation: The point where three medians of a triangle meet is called the centroid of the triangle.it is the centre of gravity of the triangle. it divides the median in the ratio 2 :1

6. We have to find the points on X-axis which are at a distance of $2\sqrt{5}$ from the

point(7,-4). Also, we will how many such points are there.

Let, the point on X-axis be (x,0).

Now, by using distance formula,

$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_2)^2}$$

$$\sqrt{(x - 7)^2 + (0 + 4)^2} = 2\sqrt{5}$$
Squaring both sides,

$$\Rightarrow (x - 7)^2 + 4^2 = (2\sqrt{5})^2$$

$$\Rightarrow x^2 - 14x + 49 + 16 = 20$$

$$\Rightarrow x^2 - 14x + 45 = 0$$

$$\Rightarrow (x - 9) (x - 5) = 0$$

$$\Rightarrow x = 9 \text{ or } x = 5$$

Hence, two points exists (9,0) and (5,0)

7. Mid-point of the line segment joining the points A(3, 0) and B(-5, 4)

$$= \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \\= \left(\frac{3-5}{2}, \frac{0+4}{2}\right) \\= \left(\frac{-2}{2}, \frac{4}{2}\right) \\= (-1, 2)$$

Hence the coordinate of mid point of line segment is (-1, 2).

- 8. Complement of the angle $20^\circ = 90^\circ 20^\circ = 70^\circ$
- 9. AB = $\sqrt{(-7-5)^2 + (-3+8)^2}$ = 13.
- 10. Applying Distance Formula to find distance between points (a, b) and (-a, -b), we get $d = \sqrt{(-a-a)^2 + (-b-b)^2} = \sqrt{(-2a)^2 + (-2b)^2}$ $= \sqrt{4a^2 + 4b^2} = \sqrt{4(a^2 + b^2)} = 2\sqrt{a^2 + b^2}$
- 11. Let P(6, -6) be the given point and O(0, 0) be the origin. Then, $OP = \sqrt{(6-0)^2 + (-6-0)^2} = \sqrt{6^2 + (-6)^2}$ $= \sqrt{36+36} = \sqrt{72} = \sqrt{36 \times 2} = 6\sqrt{2}$ units.
- 12. Here, $x_1 = -6$, $y_1 = 7$ and $x_2 = -1$, $y_2 = -5$

Therefore, by distance formula, we have,

, PQ =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

 $\Rightarrow PQ = \sqrt{(-1 + 6)^2 + (-5 - 7)^2} = \sqrt{25 + 144} = \sqrt{169} = 13$

13. Let the point C(4, 5) divides the join of A(2, 3) and B(7, 8) in the ratio k:1

The point C is $\left(\frac{7k+2}{k+1}, \frac{8k+3}{k+1}\right)$ But C is (4, 5) $\Rightarrow \frac{7k+2}{k+1} = 4$ or 7k + 2 = 4k + 4or 3k = 2 $\therefore k = \frac{2}{3}$ Thus, C divides AB in the ratio 2:3

14. Given vertices of quadrilateral are P(22, 5), Q(7, 10), R(12, 11) and S(3, 24).

Now,
$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(7 - 22)^2 + (10 - 5)^2} = \sqrt{(-15)^2 + (5)^2} = \sqrt{(225) + (25)} = 5\sqrt{10} \text{ units}$$

 $QR = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(12 - 7)^2 + (11 - 10)^2} = \sqrt{(5)^2 + (1)^2} = \sqrt{(25) + (1)} = \sqrt{26} \text{ units}$
 $RS = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(-9)^2 + (13)^2} = \sqrt{(81) + (169)} = 5\sqrt{10} \text{ units}$
 $SP = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(-19)^2 + (-19)^2} = 19\sqrt{2} \text{ units}$
Here we see that opposite sides of a quadrilateral are not equal i.e. $QR \neq SP$

Here, we see that opposite sides of a quadrilateral are not equal i.e. $QR \neq SP$. Hence, given vertices of a quadrilateral are not forming a parallelogram.

15. Let A (1, -2) and B (-3,4) be the given points.

Let the points of trisection be P and Q. Then, AP = PQ = QB = X(say)

A(1, -2) P Q B(-3, 4)
PB = PQ + QB =
$$2\lambda$$
 and AQ = AP + PQ = 2λ
 \Rightarrow AP : PB = λ : 2λ = 1 : 2 and AQ : QB = 2λ : λ = 2 : 1

So, P divides AB internally in the ratio 1 : 2 while Q divides internally in the ratio 2: 1. Thus, the coordinates of P and Q are

$$P\left(\frac{1\times-3+2\times1}{1+2},\frac{1\times4+2\times-2}{1+2}\right) = P\left(\frac{-1}{3},0\right)$$
$$Q\left(\frac{2\times-3+1\times1}{2+1},\frac{2\times4+1\times(-2)}{2+1}\right) = Q\left(\frac{-5}{3},2\right)$$

CLASS X

Hence, the two points of trisection are (-1/3, 0) and (-5/3, 2)

- 16. Let the points A (2, 3), B(4, k) and C(6, −3) be collinear. If the points are collinear then area of triangle ABC formed by these three points is 0. ∴ar (ΔABC) = $\frac{1}{2} [x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2)] = 0$ $\Rightarrow \frac{1}{2} [2 (k + 3) + 4 (-3 - 3) + 6 (3 - k)] = 0$ $\Rightarrow [2k + 6 - 24 + 18 - 6k] = 0$ $\Rightarrow [-4k] = 0$
- 17. According to the question, A (2,-2), B(14,10), C (11, 13) and D(-1, 1)

D(-1, 1)
A(2, -2)
B(14, 10)
AB =
$$\sqrt{(14-2)^2 + (10+2)^2} = 12\sqrt{2}$$
 units+
BC = $\sqrt{(11-14)^2 + (13-10)^2} = 3\sqrt{2}$ units
CD = $\sqrt{(-1-11)^2 + ur(its+13)}$ fts= $12\sqrt{2}$
AD AB ≠ (CDland2) e = A(1 2)² = $3\sqrt{2}$
∴ ABCD is a parallelogram.
Now, AC = $\sqrt{(11-2)^2 + (13+2)^2} = \sqrt{306}$
⇒ AC² = 306 units, AB² = 288 units.
BC² = 18 units
AB² + BC² = 306 units.
⇒ AC² = AB² + BC²
⇒ $\angle ABC = 90^\circ$
⇒ ABCD is a rectangle

Let P (x₁, y₁) Q(x₂, y₂) and R(x₃, y₃) be the points which divide the line segment AB into four equal parts.

Then, P divides AB in the ratio 1 : 3 internally.

$$x = \frac{mx_2 + nx_1}{m+n}$$

$$\therefore x_1 = \frac{(1)(2) + (3)(-2)}{1+3}$$

$$= \frac{2-6}{4} = -\frac{4}{4} = -1$$

$$y = \frac{my_2 + ny_1}{m+n}$$

$$y_1 = \frac{(1)(8) + (3)(2)}{1+3}$$

$$= \frac{8+6}{4} = \frac{14}{4} = \frac{7}{2}$$

So, P $\rightarrow \left(-1, \frac{7}{2}\right)$

Also, Q divides AB in the ratio 1 : 1 i.e.

Q is the mid point of AB

$$x_2 = \frac{-2+2}{2} = 0$$

 $y_2 = \frac{2+8}{2} = \frac{10}{2} = 5$
So, $Q \to (0, 5)$
and, R divides AB in the ratio 3 : 1
 $\therefore x_2 = \frac{(3)(2)+(1)(-2)}{3+1}$
 $= \frac{6-2}{4} = \frac{4}{4} = 1$
 $y_3 = \frac{(3)(8)+(1)(2)}{3+1}$
 $= \frac{24+2}{4} = \frac{26}{4} = \frac{13}{2}$
So, $R \to (1, \frac{13}{2})$

19. Let DM = h be the height of the parallelogram ABCD when AB is taken as the base. Area of $\triangle ABD = \frac{1}{2} \times (AB \times DM)$ $\Rightarrow \triangle ABD = \frac{1}{2} \times (AB \times h)$ $\Rightarrow h = \frac{2(area \triangle ABD)}{AB}$...(i) Now, first find the length of AB by using distance formula, $AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(2 - 1)^2 + (3 + 2)^2} = \sqrt{26}$ Since, the coordinates of vertices of $\triangle ABD$ are A(-1, 2),B(2, 3) and D(-4, -3). Therefore, area of $\triangle ABD = \frac{1}{2} |1(3 + 3) + 2(-3 + 2) + (-4)(-2 - 3)|$ $= \frac{1}{2} [1 (6) + 2(-1) - 4 (-5)]$ $= \frac{1}{2} [24]$ = 12 sq units Now, putting the value of AB and area of $\triangle ABD$ in Eq(i), we get

$$h = \frac{2 \times 12}{\sqrt{26}} = \frac{24}{\sqrt{26}} \times \frac{\sqrt{26}}{\sqrt{26}}$$

$$= \frac{24\sqrt{26}}{12\sqrt{26}}$$

$$= \frac{12\sqrt{26}}{13} units$$
20.
A is point of intersection of line x = 2 and 4x + 5y = 20

$$\Rightarrow 4 \times 2 + 5y = 20$$

$$\Rightarrow y = \frac{12}{5}$$

$$\therefore \text{ Coordinates of A are } \left(2, \frac{12}{5}\right)$$
B is the point of intersection of x = 2 and y = 0

$$\therefore \text{ Coordinates of B are } (2, 0).$$
C is point of intersection y = 0 and 4x + 5y = 20

$$\Rightarrow 4x + 5 \times 0 = 20$$

$$\Rightarrow x = 5$$

$$\Rightarrow \text{ Coordinates of C are } (5, 0)$$
Area $\triangle ABC = \frac{1}{2}|x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)$

$$= \frac{1}{2}|2(0 - 0) + 2\left(0 - \frac{12}{5}\right) + 5\left(\frac{12}{5} - 0\right)|$$

$$= \frac{1}{2}|\frac{-24}{5} + 12|$$

$$= \frac{1}{2} \times \frac{36}{5}$$

$$= \frac{18}{5} \text{ sq. units}$$