CBSE Test Paper 02 CH-10 Circles

- 1. Two circle are congruent if they have equal
 - a. radius
 - b. diameter
 - c. secant
 - d. chord
- 2. ABCD is a parallelogram. A circle passes through A and D and cuts AB at E and DC at F. If $\angle BEF = 80^{\circ}$, then $\angle ABC$ is equal to

- d. 100°
- 3. Number of circles that can be drawn through three non-collinear points is
 - a. 2
 - b. 1
 - **c.** 0
 - d. 3
- 4. If P and Q are any two Points on a circle then PQ is called a

- a. radius
- b. diameter
- c. secant
- d. chord
- 5. BC is a diameter of the circle and $\angle BAO = 60^{o}$. Then $\angle ADC$ is equal to

The line drawn through the centre of a circle to bisect a chord is ______to the chord.

7. In the figure, $\angle ABC = 40^{\circ}$ then find $\angle ADC$

- 8. Prove that of all the chords of a circle through a given point within it, the least is one which is bisected at that point.
- 9. In figure, $\angle PQR = 100^{\circ}$, where P, Q, R are points on a circle with centre O. Find $\angle OPR$.

10. AB and CB are two chords of circle. Prove that BO bisects \angle ABC

- 11. In the figure,
 - i. $\angle BAC = 70^{\circ}$ and $\angle DAC = 40^{\circ}$, then find $\angle BCD$
 - ii. $\angle BAC = 60^{\circ}$ and $\angle BCA = 60^{\circ}$, then find $\angle ADC$

12. Recall two circles are congruent if they have the same radii. Prove that equal chords of congruent circles subtend equal angles at their centres.

- 13. AB and BC are two chords of a circle whose centre is 0 such that $\angle ABO = \angle CBO$. Prove that AB = CB.
- 14. In figure, AB and AC are two equal chords of a circle whose centre of 0. If $OD \perp AB$ and $OE \perp AC$, prove that ADE is an isosceles triangle.
- 15. If two equal chords of a circle intersect within a circle, prove that the segments of one chord are equal to corresponding segments of the other chord.

CBSE Test Paper 02 CH-10 Circles

Solution

1. (a) radius

Explanation: Equal radius would generate two same circles that are exact copy of each other, hence making them congruent.

2. (a) 80°

Explanation:

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{B}$$

$$A = \begin{bmatrix} A \\ F \end{bmatrix}^{B}$$

$$A = \begin{bmatrix} A \\ B \\ C \end{bmatrix}^{C}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B \\ B \\ C \end{bmatrix}^{O}$$

$$A = \begin{bmatrix} B$$

3. (b) 1

Explanation:

Only 1 circle can be drawn from three non-collinear points.

4. (d) chord

Explanation: A chord is a line formed by any two points on a circle.

5. (c) 60°

Explanation:

- 6. perpendicular
- 7. ∴ ∠ABC + ∠ADC = 180° (∵ Opposite angles of a cyclic quadrilateral are supplementary)

$$\angle ADC = 180^{\circ} - \angle ABC$$

$$= 180^{\circ} - 40^{\circ} = 140^{\circ}$$

8. Let C(O, r) be a circle and let M be a point within it. Let AB be a chord whose midpoint is M. Let CD be another chord through M. We have to prove that AB < CD.

Join OM and draw ON
$$\perp$$
 CD.
In right triangle ONM, OM is the hypotenuse.
 \therefore OM > ON
 \Rightarrow Chord CD is nearer to 0 in comparison to AB
 \Rightarrow CD > AB [\therefore Of any two chords of a circle, the one which is nearer to the centre is

larger]

 \Rightarrow AB < CD

9. Since the angle subtented by an arc of a circle at its centre is twice the angle subtented by the same arc at a point on the circumference.

Therefore,
$$\angle \text{ROP} = 2 \angle \text{PQR}$$

 $\Rightarrow \angle \text{ROP} = 2 \times 100^{\circ} = 200^{\circ}$
Now $\widehat{mPR} + \widehat{mRP} = 360^{\circ} \Rightarrow \angle \text{POR} + \angle \text{ROP} = 360^{\circ} \Rightarrow \angle \text{POR} + 200^{\circ} = 360^{\circ} \Rightarrow \angle \text{POR} = 360^{\circ} - 200^{\circ} = 160^{\circ}$ (i)
Now $\triangle \text{OPR}$ is an isosceles triangle.
 $\therefore \text{OP} = \text{OR}$ [Radii of the circle]

 $\Rightarrow \angle \text{OPR} = \angle \text{ ORP}$ [Angles opposite to equal sides are equal](ii)

Now in isosceles triangle OPR,

 $\angle OPR + \angle ORP + \angle POR = 180^{\circ}$ [The sum of the all angles of a traingle is 180°] $\Rightarrow \angle OPR + \angle ORP + 160^{\circ} = 180^{\circ}$

 \Rightarrow 2 \angle OPR = $180^{\circ} - 160^{\circ}$ [Using (i) & (ii)]

 \Rightarrow 2 \angle OPR = 20°

$$\Rightarrow \angle \text{OPR} = 10^{\circ}$$

10. Join OA and OC

In \triangle OAB And \triangle OCB OA = OC (radii of circle) OB = OB (common) AB = BC (given) \triangle OAB $\cong \triangle$ OCB (by SSS) Therefore, \angle ABO = \angle CBO [By CPCT] Hence, BO bisects \angle ABC

11. i. $\angle BCD = 180^{\circ} \cdot \angle BAD$ (\therefore Opposite angles of a cyclic quadrilateral are supplementary)

 $= 180^{\circ} - (\angle BAC + \angle DAC)$

 $= 180^{\circ} - (70^{\circ} + 40^{\circ}) = 70^{\circ}$

ii. ∠CBA = 180° - (∠BAC + ∠BCA) (∴Opposite angles of a cyclic quadrilateral are supplementary)

= $180^{\circ} - (60^{\circ} + 20^{\circ}) = 100^{\circ}$ $\angle ADC = 180^{\circ} - \angle CBA$ = $180^{\circ} - 100^{\circ} = 80^{\circ}$

12. I Part: Two circles are said to be congruent if and only if one of them can be superposed on the other so as to cover it exactly.

Let C (O) and C (O') be two circles. Let us imagine that the circle C (O') is superposed on C (O) so that O' coincide with O. Then it can easily be seen that C (O') will cover C (O) completely.

Hence we can say that two circles are congruent, if and only if they have equal radii.

II Part: Given: In a circle (O), AB and CD are two equal chords, subtend \angle AOB and \angle COB at the centre. To Prove: \angle AOB = \angle COD Proof: In \triangle AOB and \triangle COD, AB = CD [Given] AO = CO [Radii of the same circle] BO = DO [Radii of the same circle] \triangle AOB \cong \triangle COD [By SSS congruency] $\Rightarrow \angle$ AOB = \angle COD [By CPCT] Hence Proved.

13. AB and BC are two chords of a circle whose centre is 0 such that $\angle ABO = \angle CBO$. To prove : AB = CB

Construction : Draw $\mathrm{OL}\perp\mathrm{BC}$ and $OM\perp BA$.

Proof: In $\triangle OBL$ and $\triangle OBM$ $\angle OBL = \angle OBM$ |Given $\angle OLB = \angle OMB$ |Each = 90° (by const.) OB = OB |Common $\therefore \triangle OBL \cong \triangle OBM$ |AAS BL = BM |c.p.c.t $\Rightarrow 2BL = 2BM$ $\Rightarrow BC = BA$ [L and M are the mid-points of BC and BA r

[L and M are the mid-points of BC and BA respectively since the perpendicular draw from the centre of a circle to a chord bisects the chord]

$$\Rightarrow BA = BC$$
$$\Rightarrow AB = CB$$

14. Given: In figure, AB and AC are two equal chords of a circle whose centre is 0. $OD \perp AB$ and $OE \perp AC$

To prove: ADE is an isosceles triangle

Proof: AB = AC OD = OE $| \because$ Equal chords are equidistant from the centre \therefore In $\triangle ODE$ $\angle ODE = \angle OED$ |Angle opposite to equal sides $\Rightarrow 90^{\circ} - \angle ODE = 90^{\circ} - \angle OED$ $\Rightarrow \angle ODA - \angle ODE = \angle OEA - \angle OED$ $\Rightarrow \angle ADE = \angle AED$ $\therefore AD = AE$ |Sides opposite to equal angles $\therefore \triangle ADE$ is an isosceles triangle.

15. Given: Let AB and CD are two equal chords of a circle of centers O intersecting each other at point E within the circle.

To prove: (a) AE = CE (b) BE = DE

Construction: Draw OM \perp AB, ON \perp CD. Also join OE.

Proof: In right triangles OME and ONE,

```
\angle OME = \angle ONE = 90^{\circ}
```

OM = ON

[Equal chords are equidistance from the centre]

OE = OE [Common]

 $\therefore \triangle \mathsf{OME} \cong \triangle \mathsf{ONE}$ [RHS rule of congruency]

```
... ME = NE [By CPCT] ...(i)

Now, O is the centre of circle and OM \perp AB

... AM = \frac{1}{2} AB [Perpendicular from the centre bisects the chord] ...(ii)

Similarly, NC = \frac{1}{2} CD ...(iii)

But AB = CD [Given]

From eq. (ii) and (iii), AM = NC ...(iv)

Also MB = DN ...(v)

Adding (i) and (iv), we get,

AM + ME = NC + NE

\Rightarrow AE = CE [Proved part (a)]

Now AB = CD [Given] ...(v)

AE = CE [Proved] ...(vi)

Subtracting eq. (vi) from eq. (v), we have

\Rightarrow AB - AE = CD - CE

\Rightarrow BE = DE [Proved part (b)]
```