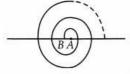
CBSE Test Paper 05

Chapter 5 Arithmetic Progression

- **1.** The sum of the first 15 multiples of 8 is **(1)**
 - a. 900
 - b. 960
 - c. 1000
 - d. 870
- If the angles of a right angled triangle are in A.P. then the angles of that triangle will be (1)
 - a. $45^{\circ}, 45^{\circ}, 90^{\circ}$
 - b. 30°, 60°, 90°
 - c. 40°, 50°, 90°
 - d. 20° , 70° , 90°
- 3. In an A.P., if $S_n = 3n^2 + 2n$, then the value of ' a_n ' is (1)
 - a. 7n 2
 - b. 9n 4
 - c. 8n 3
 - d. 6n 1
- **4.** The sum of (a + b), (a b), (a 3b), to 22nd term is **(1)**
 - a. 22a + 440b
 - b. 22a 440b
 - c. 20a + 440b
 - d. 22a 400b
- **5.** The first and last terms of an A.P. are 1 and 11. If their sum is 36, then the number of terms will be **(1)**
 - a. 7
 - b. 5
 - c. 8
 - d. 6
- 6. Is series $\sqrt{3}, \sqrt{6}, \sqrt{9}, \sqrt{12}, \ldots$ an A.P.? Give reason. (1)
- 7. The sum of three numbers in AP is 21 and their product is 231. Find the numbers. (1)

- 8. Find a and b such that the numbers a, 9, b, 25 form an AP. (1)
- **9.** For an A.P., if $a_{25} a_{20} = 45$, then find the value of d. **(1)**
- **10.** Find the common difference of the AP : $\frac{1}{p}$, $\frac{1-p}{p}$, $\frac{1-2p}{p}$, (1)
- **11.** An A.P. consists of 37 terms. The sum of the three middle most terms is 225 and the sum of the past three terms is 429. Find the A.P. **(2)**
- **12.** Write the expression $a_n a_k$ for the AP: a, a + d, a + 2d, ... and find the common difference of the AP for which 20th term is 10 more than the 18th term. **(2)**
- 13. The sum of the first three terms of an A.P. is 33. If the product of first and the third term exceeds the second term by 29, find the AP. **(2)**
- **14.** If the mth term of an AP be $\frac{1}{n}$ and its nth term be $\frac{1}{m}$, then show that its (mn)th term is 1. **(3)**
- **15.** Find the sum of first 20 terms of an A.P., in which 3rd term is 7 and 7th term is two more than thrice of its 3rd term. **(3)**
- **16.** The ratio of the sums of first m and first n terms of an A.P. is $m^2 : n^2$. Show that the ratio of its mth and nth terms is (2m 1):(2n 1). **(3)**
- 17. A spiral is made up of successive semi-circles with centres alternately at A and B starting with A, of radii 1 cm, 2 cm, 3 cm,....as shown in the figure. What is the total length of spiral made up of eleven consecutive semi-circles? **(3)**



18. In an A.P., the sum of first n terms is $\frac{3n^2}{2} + \frac{13}{2}n$. Find its 25th term. (4)

- 19. Find the sum of all integers between 100 and 550 which are not divisible by 9. (4)
- 20. If the sum of the first n terms of an A.P. is 4n n², what is the first term? What is the sum of first two terms? What is the second term? Similarly, find the third, the tenth and the nth terms. (4)

CBSE Test Paper 05

Chapter 5 Arithmetic Progression

Solution

1. b. 960

Explanation: Multiples of 8 are 8, 16, 24, Here a = 8, d = 16 - 8 = 8 and n = 15Now, $S_n = \frac{n}{2} [2a + (n - 1)d]$ $\Rightarrow S_{15} = \frac{15}{2} [2 \times 8 + (15 - 1)8]$ $\Rightarrow S_{15} = \frac{15}{2} [16 + 14 \times 8]$ $= \frac{15}{2} \times 128$ $= 15 \times 64$ = 960

2. b. 30° , 60° , 90°

Explanation: Let the three angles of a triangle be a - d, a and a + d. $\therefore a - d + a + a + d = 180^{\circ}$ $\Rightarrow 3a = 180^{\circ}$ $\Rightarrow a = 60^{\circ}$ Therefore, one angle is of 60° and other is 90° (given). Let third angle be x° , then $60^{\circ} + 90^{\circ} + x^{\circ} = 180^{\circ}$ $\Rightarrow 150^{\circ} + x^{\circ} = 180^{\circ}$ $\Rightarrow x^{\circ} = 180^{\circ} - 150^{\circ} = 30^{\circ}$ Therefore, the angles of the right angled triangle are 30° , 60° , 90°

Therefore, the angles of the right angled triangle are $30^\circ, 60^\circ, 90^\circ.$

3. d. 6n – 1

Explanation: Given: $S_n = 3n^2 + 2n$ $S_1 = 3(1)^2 + 2 \times 1 = 3 + 2 = 5$ $\Rightarrow a = 5$ $S_2 = 3(2)^2 + 2 \times 2$ $S_{2=} 3 \times 4 + 4$ $S_2 = 12 + 4$

$$S_{2} = 16$$

⇒ $a_{1} + a_{2} = 16$
⇒ $a_{1} = 5$
⇒ $a_{2} = 11$
∴ $d = a_{2} - a_{1} = 11 - 5 = 6$
∴ $a_{n} = a + (n - 1) d$
= $5 + (n - 1) 6 = 5 + 6n - 6 = 6n - 1$

4. b. 22a – 440b

0

10

Explanation: Given: a = a + b, d = a - b - a - b = -2b $\therefore S_{22} = \frac{22}{2} [2 (a + b) + (22 - 1) (-2b)]$ = 11 [2a + 2b + (21) (-2b)] $\Rightarrow S_{22} = 11 [2a + 2b - 42b]$ = 11 [2a - 40b]= 22a - 440b

Explanation: Given: a = 1, l = 11 and $S_n = 36$ $\therefore S_n = \frac{n}{2}(a+l)$ $\Rightarrow 36 = \frac{n}{2}(1+11)$ $\Rightarrow 72 = n \times 12$ $\Rightarrow n = 6$

6. Common difference,

$$d_{1} = \sqrt{6} - \sqrt{3} \\ = \sqrt{3}(\sqrt{2} - 1) \\ d_{2} = \sqrt{9} - \sqrt{6} \\ = \sqrt{3} \times 3 - \sqrt{2} \times 3 \\ = 3 - \sqrt{6} \\ d_{3} = \sqrt{12} - \sqrt{9} \\ = \sqrt{4 \times 3} - \sqrt{9} \\ = 2\sqrt{3} - 3$$

As common difference does not equal.

Hence, The given series is not in A.P.

7. Let the required numbers be (a-d), a and (a + d)(1) Then, according to question, (a - d) + a + (a + d) = 21 \Rightarrow 3a = 21 \Rightarrow a = 7. And, (a - d) $\cdot a \cdot (a + d) = 231 \Rightarrow a (a^2 - d^2) = 231$ $\Rightarrow 7(49 - d^2) = 231 [\cdot a = 7]$

$$\Rightarrow 7d^2 = 343 - 231 = 112$$

 \Rightarrow d² = 16

$$\Rightarrow$$
d = \pm 4

Thus, a = 7 and d = \pm 4. Now substitute these values of a and d in above equation (1). Therefore, the required numbers are(3,7,11) or (11,7,3).

- 8. The numbers a, 9, b, 25 form an AP, we have 9-a = b-9 = 25-b. Now, $b - 9 = 25 - b \Rightarrow 2b = 34 \Rightarrow b = 17$. And, $9 - a = b - 9 \Rightarrow a + b = 18 \Rightarrow a + 17 = 18 \Rightarrow a = 1$. Hence, a = 1 and b = 17.
- 9. Let the first term of an A.P be *a* and common difference *d*. $a_n = a + (n-1)d$ $\therefore a_{25} \cdot a_{20} = [a + (25 - 1)d] - [a + (20 - 1)d]$ or, 45 = a + 24d - a - 19dor, 45 = 5dor, $d = \frac{45}{5} = 9$
- 10. Common difference(d) = $n^{th}term (n-1)^{th}term$ $\therefore d = a_2 - a_1$

$$d = (\frac{1-p}{p}) - (\frac{1}{p}) = \frac{(1-p)-(1)}{p} = \frac{-p}{p} = -1$$

 $d = -1$

11. Let the middle most terms of the A.P. be (a-d), a, (a+d)Given a-d+a+a+d=2253a=225

or, a = 75and the middle term = $\frac{37+1}{2}$ = 19th term : A.P. is (a - 18d),....(a - 2d), {a - d), a, (a + d), (a + 2d),.....(a + 18d)Sum of last three terms (a+18d) + (a+17d) + (a+16d) = 429or.3a + 51d = 429or, 225 + 51d = 429or, d = 4 First term $a_1 = a - 18d = 75 - 18 \times 4 = 3$ $a_2 = 3 + 4 = 7$ Hence, A.P. = 3, 7, 11,, 147 12. a_n = a + (n - 1)d; a_k = a <mark>+ (k - 1)d</mark> Now, $a_n - a_k = [a + (n - 1)d] - [a + (k - 1)d] = (n - 1)d - (k - 1)d = (n - 1 - k + 1)d$ $a_n - a_k = (n - k)d.....(1)$ Let $a_{18} = x$. $a_{20} = x + 10$

Taking n = 20 and k = 18, equation (1) becomes

- $a_{20} a_{18} = (20 18)d \Rightarrow (x + 10) x = 2d \Rightarrow d = 5$
- 13. Let the first three terms in A.P. be a d, a, a + d. It is given that the sum of these terms is 33.

```
\therefore a \cdot d + a + a + d = 33

\Rightarrow 3a = 33

\Rightarrow a = 11

It is given that

a_1 \times a_3 = a_2 + 29

(a \cdot d)(a + d) = a + 29

a^2 - d^2 = a + 29

121 - d^2 = 11 + 29

d^2 = 121 - 40 = 81
```

 $d = \pm 9$

If d = 9 then the series is 2,11,20,29

If d = -9 then the series is 20,11,2,-7,-16

14. Let a be the first term and d be the common difference of the given AP. Now, we know that in general mth and nth terms of the given A.P can be written as

 $T_m = a + (m-l)d$ and $T_n = a + (n-1)d$ respectively.

Now, $T_m = \frac{1}{n}$ and $T_n = \frac{1}{m}$ (given). $\therefore a + (m-1)d = \frac{1}{m}$(i) and $a + (n-1)d = \frac{1}{m}$(ii) On subtracting (ii) from (i), we get $(m-n)d = (\frac{1}{n} - \frac{1}{m}) = (\frac{m-n}{mn}) \Rightarrow d = \frac{1}{mn}$ Putting $d = \frac{1}{mn}$ in (i), we get $a + \frac{(m-1)}{mn} \Rightarrow a = \{\frac{1}{n} - \frac{(m-1)}{mn}\} = \frac{1}{mn}$ Thus, $a = \frac{1}{mn}$ and $d = \frac{1}{mn}$

:.Now, in general (mn)th term can be written as $T_{mn} = a + (mn-1)d$

$$= \{\frac{1}{mn} + \frac{(mn-1)}{mn}\} [::a = \frac{1}{mn}] = 1.$$

Hence, the (mn)th ter<mark>m of</mark> the given AP is 1.

15. Here, we have the sum of first 20 terms of an A.P., in which 3rd term is 7 and 7th term is two more than thrice of its 3rd term.

Let "a" be the first term and "d"be the common difference of the given A.P. Therefore,

$$a_{3} = 7 \text{ and } a_{7} = 3a_{3} + 2 \text{ [Given]}$$

$$\Rightarrow a + 2d = 7 \text{ and } a + 6d = 3(a + 2d) + 2$$

$$\Rightarrow a + 2d = 7 \text{ and } a + 6d = 3a + 6d + 2$$

$$\Rightarrow a + 2d = 7 \text{ and } a - 3a = 6d - 6d + 2$$

$$\Rightarrow a + 2d = 7 \text{ and } -2a = 2$$

$$\Rightarrow a + 2d = 7 \text{ and } a = -1$$

$$\Rightarrow -1 + 2d = 7$$

$$\Rightarrow 2d = 7 + 1 = 8$$

$$\Rightarrow d = 4$$

 \Rightarrow a = -1 and d = 4

Putting n = 20, a = -1 and d = 4 in
$$S_n = \frac{n}{2} \{2a + (n-1)d\}$$
, we get $S_{20} = \frac{20}{2} \{2 \times -1 + (20-1) \times 4\} = \frac{20}{2} (-2+76) = 740$

16. Let first term of given A.P. be a and common difference be d also sum of first m and first n terms be S_m and S_n respectively

$$\begin{array}{ll} \vdots & \frac{S_m}{S_n} = \frac{m^2}{n^2} \\ \text{or,} & \frac{\frac{m}{2} [2a + (m-1)d]}{\frac{n}{2} [2a + (m-1)d]} = \frac{m^2}{n^2} \\ \text{or,} & \frac{2a + (m-1)d}{2a + (n-1)d} = \frac{m^2}{n^2} \times \frac{n}{m} \\ \text{or,} & \frac{2a + (m-1)d}{2a + (n-1)d} = \frac{m}{n} \\ \text{or,} & m(2a + (n-1)d) = n[2a + (m-1)d] \\ \text{Now,} & \frac{a_m}{a_n} = \frac{a + (m-1)d}{a + (n-1)d} \\ = \frac{a + (m-1) \times 2a}{a + (n-1) \times 2a} \\ \text{or,} & = \frac{a + 2ma - 2a}{2ma - a} \\ \text{or,} & = \frac{2ma - a}{2ma - a} \\ \text{or,} & = \frac{a(2m-1)}{a(2n-1)} \\ \text{or,} & = \frac{(2m-1)}{a(2n-1)} \\ = 2m - 1 \vdots 2n - 1 \end{array}$$

The ratio of its $\mathrm{m^{th}}$ and $\mathrm{n^{th}}$ terms is 2m-1:2n-1.Hence proved

17. Let $r_1, r_2,$ be the radii of semicircles and l_1, l_2 be the lengths of circumferences of semi-circles, then

$$l_1 = \pi r_1 = \pi(1) = \pi cm$$

 $l_2 = \pi r_2 = \pi(2) = 2\pi cm$
 $l_3 = \pi r_3 = \pi(3) = 3\pi cm$
....
 $l_{11} = \pi r_{11} = \pi(11) = 11\pi cm$
 \therefore Total length of spiral
 $= l_1 + l_2 + \ldots + l_{11}$
 $= \pi + 2\pi + 3\pi + \ldots + 11\pi$

 $= \pi(1 + 2 + 3 + 4 \dots + 11)$ = $\pi \times \frac{11 \times 12}{2}$ = 66×3.14 = 207.24cm

18. According to the question,

Given Sum of n terms $(S_n) = \frac{3n^2}{2} + \frac{13}{2}n$ Put n = 24, $S_{24} = \frac{3 \times 24 \times 24}{2} + \frac{13 \times 24}{2}$ = 864 + 156 = 1020 Put n = 25, $S_{25} = \frac{3 \times 25 \times 25}{2} + \frac{13 \times 25}{2}$ $= \frac{1875}{2} + \frac{325}{2}$ $= \frac{2200}{2} = 1100$ \therefore 25th term (a₂₅) = S₂₅ - S₂₄ = 1100 - 1020 = 80 19. All integers between 100 and 550, which are divisible by 9 = 108, 117, 126,......, 549 First term (a) = 108

Common difference(d<mark>) = 11</mark>7 - 108 = 9

Last term $(a_n) = 549$

 \Rightarrow a + (n - 1)d = 549

⇒108 + (n - 1)(9) = 549

 \Rightarrow 108 + 9n - 9 = 549

$$\Rightarrow$$
9n = 549 + 9 - 108

 \Rightarrow 9n = 450

$$\Rightarrow n = \frac{450}{9} = 50$$

Sum of 50 terms =
$$\frac{n}{2}[a+a_n]$$

$$=\frac{50}{2}[108+549]$$

$$= 25 \times 657$$

= 16425

Now, sum of all integers between 100 and 550 which are not divisible by 9

= Sum of all integers between 100 and 550 - Sum of all integers between 100 and 550

which are divisible by 9

$$= [101 + 102 + 130 + \dots + 549] - 16425$$

= $\frac{549 \times 550}{2} - \frac{100 \times 101}{2} - 16425$
= 150975 - 5050 - 16425
= 129500

20. Given that,

```
Sn = 4n - n<sup>2</sup>

First term, a = S1 = 4(1) - (1)^2 = 4 - 1 = 3

Sum of first two terms = S<sub>2</sub>

= 4(2) - (2)^2 = 8 - 4 = 4

Second term, a<sub>2</sub> = S<sub>2</sub> - S<sub>1</sub> = 4 - 3 = 1

d = a<sub>2</sub> - a = 1 - 3 = -2

a<sub>n</sub> = a + (n - 1)d

= 3 + (n - 1)(-2)

= 3 - 2n + 2

= 5 - 2n

Therefore, a<sub>3</sub> = 5 - 2(3) = 5 - 6 = -1

a<sub>10</sub> = 5 - 2(10) = 5 - 20 = -15
```

Hence, the sum of first two terms is 4. The second term is 1. 3^{rd} , 10^{th} and n^{th} terms are -1, -15, and 5 - 2n respectivey.