NEET ANSWER KEY & SOLUTIONS

SUBJECT :- PHYSICS

CLASS :- 12 th CHAPTER :- SEMICONDUCTOR							PAPER CODE :- CWT-11						
ANSWER KEY													
1.	(C)	2.	(A)	3.	(B)	4.	(B)	5.	(B)	6.	(D)	7.	(A)
8.	(D)	9.	(B)	10.	(B)	11.	(A)	12.	(B)	13.	(C)	14.	(C)
15.	(C)	16.	(A)	17.	(B)	18.	(A)	19.	(C)	20.	(C)	21.	(B)
22.	(D)	23.	(A)	24.	(B)	25.	(C)	26.	(C)	27.	(B)	28.	(B)
29.	(B)	30.	(A)	31.	(D)	32.	(D)	33.	(C)	34.	(B)	35.	(A)
36.	(D)	37.	(C)	38.	(D)	39.	(A)	40.	(A)	41.	(D)	42.	(B)
43.	(D)	44.	(D)	45.	(D)	46.	(B)	47.	(B)	48.	(D)	49.	(D)
50.	(A)												

		SC		NS				
	SECTION-A			13.	(C)			
1. (C)				501.	iunction diode a huge current flows in the			
					reverse direction suddenly. This is called			
2. (A)					Breakdown of PN-junction diode.			
Sol. With t	emperature rise	conductivity of						
semicor	nductors increase	s, that's why		14. Sol	(C) At junction a potential barrier/depletion			
resistar	ce of semiconducto	or is decrease.		501.	laver is formed with <i>N</i> -side at higher			
3 (B)					potential and <i>P</i> -side at lower potential.			
J. (D)	antavalen t	N. tuno			Therefore there is an electric field at the			
Sol. $Ge + 1$	impurity	semiconduc tor			junction directed from the <i>N</i> -side to <i>P</i> -side			
L	impunty	semiconduc tor			E			
4 . (B)					$\bullet \longrightarrow Holes$			
Sol. Impurity	increases the cond	ductivity.			$\begin{array}{c} \bigcirc \\ \circ \\ \circ \\ \end{array} \begin{array}{c} \bigcirc \\ \bullet \\$			
5. (B)								
6. (D)				15. Sol	(C) In forward biasing of <i>RN</i> -junction diade			
Sol. In P-ty	/pe semiconducto	ors, holes are		501.	current mainly flows due to the diffusion of			
minority	charge carriers.				majority charge carriers.			
	C C				, , ,			
7. (A)	orua ia a pontavala	nt impurity oo n		16.	(A)			
> n _b .	orus is a peritavale	ni impunty so <i>n</i> e		Sol.	At high reverse voltage, the minority			
					velocities These by collision break down			
8. (D)	(D)				the covalent bonds deperating more			
9 (B)					carriers. This mechanism is called			
Sol. As max	imum energy does	not depend on			Avalanche breakdown.			
the inte	nsity of light.							
10 (P)				17. Sel	(B)			
ю. (в)				501.	electric field at the junction also increases			
11. (A)					At some stage the electric field breaks the			
Sol. Depletio	on layer consist of n	nainly stationary			covalent bond, thus the large number of			
ions.					charge carriers are generated. This is			
12 (B)					called Zener breakdown.			
Sol. Current	flow	oossible and						
een ouron	HOW IS I			40				
. V	(4-1) $(4-2)$			18.	(A)			

20. Sol.	(C) In photodiode, it is illuminated by light radiations, which in turn produces electric current.						
21. Sol.	(B) For 'OR' gate X = A + B <i>i.e.</i> 0+0=0, 0+1=1, 1+0=1, 1+1=1						
22. Sol.	(D) The output D for the given combination $D = \overline{(A+B).C} = \overline{(A+B)} + \overline{C}$ If $A = B = C = 0$ then $D = \overline{(0+0)} + \overline{0} = \overline{0} + \overline{0} = 1 + 1 = 1$ If $A = B = 1$, $C = 0$ then $D = \overline{(1+1)} + \overline{0} = \overline{1} + \overline{0} = 0 + 1 = 1$						
23. Sol.	(A) The Boolean expression for 'NOR' gate is $Y = \overline{A + B}$ <i>i.e.</i> if $A = B = 0$ (Low), $Y = \overline{0 + 0} = \overline{0} = 1$ (High)						
24. Sol.	(B) For 'AND' gate, if output is 1 then both inputs must be 1.						
25. Sol.	(C) $A \leftarrow P \leftarrow P \leftarrow P$ $F = \overline{A} + \overline{B}$ According to De morgan's theorem $Y = \overline{\overline{A} + \overline{B}} = \overline{\overline{A} \cdot \overline{\overline{B}}} = A \cdot B$ This is the output equation of 'AND' gate.						
26.	(C)						
27. Sol.	(B) The output of OR gate is $Y = A + B$.						
28.	(B)						
29. Sol.	(B) Two 'NAND' gates are required as follows						
	$A \circ A \circ A \circ B \circ A \circ A$						
30	(A)						

- **30.** (A)
- **31**. (D)
- **32.** (D)

- **33.** (C)
- Sol. If $V_A > V_B$, the diode is in forward biased and the current passes through both the resistances. So equivalent resistance Req = 5Ω If $V_A < V_B$, the diode is in reverse biased, thus hardly any current would pass through the upper resistance of 10Ω Thus, Req = 10Ω.
- **34.** (B)
- **35**. (A)

SECTION-B							
36.	(D)						
Sol.	For	full	wave	rectifier	$\eta = \frac{81.2}{1 + \frac{r_f}{R_L}}$		
		\Rightarrow	n _m	ax = 81.2%	(r _f << R _L)		

- **37.** (C)
- **38.** (D)
- Sol. In a p-n junction diode, majority carriers are holes on p-side and electrons on nside. Holes, thus diffuse to n-side and electrons to p-side. Thus diffusion causes an excess positive charge in then-region and an excess negative charge in the pregion and an excess negative charge in the p-region near the jjunction. Thus double layer of charge creates an electric field which exerts a force on the electrons and holes, against their diffusion. Thus electric field becomes strong enough as diffusion proceeds to stop it. In the equilibrium position, there is a barrier, for charge motion with the n-side at a higher potential then the p-side. The junction region has a very low density

The junction region has a very low density of either p or n-type carriers, because of inter diffusion. It is called depletion region. There is a barrier V_B associated with it. This is the potential barrier.

- **39.** (A)
- Sol. When the connection of battery is reversed, then a semiconduction device is reverse biased. We know that in forward biasing of p-n junction the current is of the order of milliampere while in reverse biassing the current is of the order of microampere (negigible). Thus, device is a p -n junction.

40. (A)

Sol. Due to have revise blasing the width of deplection region increases and current flowing throgh the diode is almost zero . In the case electric field is almost zero at the middle of the depletion region

41. (D)

Sol. Diode is forward biased in first half cycle and amplitude of signal is 5V.

Correct choice: (D)

- 42. (B)
- Diode in revers by so current thrugh A1 is Sol. zero.
- 43. (D)
- Sol. The term LED is abbreviated as 'Light Emitting Diode'. It is forward biased p-n junction which emits spontaenous radiation. Current in the circult = 10 mA = 10×10^{-3} A and voltage in the circuit = 6 -2 = 4v. From ohm's law,

:.
$$R = \frac{V}{I} = \frac{4}{10 \times 10^{-3}} = 400 \Omega$$

- (D) 44.
- Sol. Key Idea :Gates-I and II are NOR gates. We can simplify the gate circuit as

Here. gates-I and II are NOR gates. The output (A + B) of gate-I will be appeared as input of gate-II. The final output is Y = A + B = A + B

This is the Boolean expression of OR gate whose truth table is given below :

A	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

45. (D) Sol.

46. (B) Y = $\overline{A \cdot A}$ = $\overline{A} + \overline{A} = \overline{A}$, which is a NOT Sol. gate.

- 47. (B)
- Sol. The device that can act as a complete circuit is integrated circuit (I.C.).

 $n_i^2 = n_e n_h$

$$(1.5 \times 10^{16})^2 = n_e(4.5 \times 10^{22})$$

$$n_e = 0.5 \times 10^{10}$$

 $n_e = 5 \times 10^9$
 $n_h = 4.5 \times 10^{22}$
 $n_h >> n_e$

Semiconductor is p–type and $n_e = 5 \times 10^9$ m^{−3}.

49. (D)
Sol. Voltage across zener diode is constant

$$\begin{array}{c}
250\Omega & i & i_{1k\Omega} \\
250V & 15V & i_{1k\Omega} \\
20V & 15V & 15V \\
(i)_{1k\Omega} = \frac{15 \text{ volt}}{1k\Omega} = 15 \text{ mA} \\
(i)_{250\Omega} = \frac{(20-15)V}{250\Omega} = \frac{5V}{250\Omega} = \frac{20}{1000} \text{ A} \\
= 20 \text{ mA} \\
\therefore \qquad (i)_{zener diode} = (20-15) = 5 \text{ mA}.
\end{array}$$

50. (A) Sol.

49.

It is V - i cherecterstic curve for a solar cell, where A represent open circuit voltage of solar cell and B represent short circuit current.