|                    | NEET : CHAPTE                                                                                                                                                                                                                                                                                                                           | R WISE | TEST-10                                                                                                                                                                                                                                                                               |                                                                              |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|
| SUBJECT :- PHYSICS |                                                                                                                                                                                                                                                                                                                                         |        | DATE                                                                                                                                                                                                                                                                                  |                                                                              |  |
|                    |                                                                                                                                                                                                                                                                                                                                         |        |                                                                                                                                                                                                                                                                                       |                                                                              |  |
|                    | SECT                                                                                                                                                                                                                                                                                                                                    |        | SECTION                                                                                                                                                                                                                                                                               |                                                                              |  |
| 1.                 | The cathode rays have particle nature<br>because of the fact that<br>(A) They can propagate in vacuum<br>(B) They are deflected by electric and<br>magnetic fields<br>(C) They produced fluorescence<br>(D) They cast shadows                                                                                                           | 7.     | According to Bohr's theory the momentum of an electron revisecond orbit of hydrogen atom with (A) $2\pi h$ (B) $\pi h$ (C) $\frac{h}{\pi}$ (D) $\frac{2h}{\pi}$                                                                                                                       | noment of<br>/olving in<br>ill be                                            |  |
| 2.                 | <ul> <li>When electron beam passes through an electric field, they gain kinetic energy. If the same beam passes through magnetic field, then</li> <li>(A) Their energy increases</li> <li>(B) Their momentum increases</li> <li>(C) Their potential energy increases</li> <li>(D) Energy and momentum both remains unchanged</li> </ul> | 8.     | Einstein's photoelectric equation s<br>$E_k = hv - \phi$ . In this equation $E_k$ re<br>(A) Kinetic energy of all the<br>electrons<br>(B) Mean kinetic energy of the<br>electrons<br>(C) Maximum kinetic energy of the<br>electrons<br>(D) Minimum kinetic energy of the<br>electrons | states that<br>fers to<br>e emitted<br>e emitted<br>ne emitted<br>ne emitted |  |
| 3.                 | An electron is accelerated through a potential difference of 1000 volts. Its velocity is nearly<br>(A) $3.8 \times 10^7 m/s$ (B) $1.9 \times 10^6 m/s$<br>(C) $1.9 \times 10^7 m/s$ (D) $5.7 \times 10^7 m/s$<br>The ratio of langest wavelength and the                                                                                | 5.     | irradiated with light of wavelength<br>The retarding potential required to<br>escape of photo-electrons is<br>(A) $4.81 Ev$ (B) $3.74$<br>(C) $2.65 eV$ (D) $1.07$                                                                                                                    | a 332 nm.<br>o stop the<br>eV<br>eV                                          |  |
| 4.                 | shortest wavelength observed in the five<br>spectral series of emission spectrum of<br>hydrogen is<br>(A) $\frac{4}{3}$ (B) $\frac{525}{376}$<br>(C) 25 (D) $\frac{900}{11}$                                                                                                                                                            | 10.    | The principle of controlled chain r<br>used in<br>(A) Atomic energy reactor<br>(B) Atom bomb<br>(C) The core of sun<br>(D) Artificial radioactivity                                                                                                                                   | reaction is                                                                  |  |
| 5.                 | The momentum of a photon is<br>$3.3 \times 10^{-29} kg - m/sec$ . Its frequency will be<br>(A) $3 \times 10^{3} Hz$ (B) $6 \times 10^{3} Hz$<br>(C) $7.5 \times 10^{12} Hz$ (D) $1.5 \times 10^{13} Hz$<br>There are $n_1$ photons of frequency $\gamma_1$ in a                                                                         |        | <ul> <li>In Bohr model of the hydrogen</li> <li>lowest orbit corresponds to</li> <li>(A) Infinite energy</li> <li>(B) The maximum energy</li> <li>(C) The minimum energy</li> <li>(D) Zero energy</li> </ul>                                                                          | atom, the                                                                    |  |
|                    | beam of light. In an equally energetic<br>beam, there are $n_2$ photons of frequency<br>$\gamma_2$ . Then the correct relation is<br>(A) $\frac{n_1}{n_2} = 1$ (B) $\frac{n_1}{n_2} = \frac{\gamma_1}{\gamma_2}$<br>(C) $\frac{n_1}{n_2} = \frac{\gamma_2}{\gamma_1}$ (D) $\frac{n_1}{n_2} = \frac{\gamma_1^2}{\gamma_2^2}$             | 12.    | When light falls on a metal su<br>maximum kinetic energy of the<br>photo-electrons depends upon<br>(A) The time for which light fal<br>metal<br>(B) Frequency of the incident light<br>(C) Intensity of the incident light<br>(D) Velocity of the incident light                      | rface, the<br>e emitted<br>lls on the<br>t                                   |  |

| 13. | The retarding potentia<br>photo-electron current   | l fo        | or ha             | ving zero           |
|-----|----------------------------------------------------|-------------|-------------------|---------------------|
|     | incident light                                     | ine         | wave              | elength of          |
|     | (B) Increases uniformly                            | wi          | th the            | increase            |
|     | (C) Is proportional to<br>incident light           | the         | e frec            | luency of           |
|     | (D) Increases uniformly in the frequency of incide | v wi<br>ent | th the<br>light v | increase<br>wave    |
| 14. | The binding energy measure of its                  | of          | nucle             | eus is a            |
|     | (A) Charge                                         | (B)         | Mass              | 6                   |
|     | (C) Momentum                                       | (D)         | Stab              | ility               |
| 15. | A chain reaction is conti                          | nuo         | us du             | e to                |
|     | (A) Large mass defect                              |             |                   |                     |
|     | (B) Large energy                                   |             |                   |                     |
|     | (C) Production of more r                           | neut        | trons             | in fission          |
|     | (D) None of these                                  |             |                   |                     |
| 16. | As the intensity of incide                         | ent l       | ight in           | icreases            |
|     | (A) Photoelectric current                          | t inc       | rease             | es                  |
|     | (B) Photoelectric current                          | t de        | creas             | es                  |
|     | (C) Kinetic energ                                  | у           | of                | emitted             |
|     | photoelectrons increase                            | S           |                   |                     |
|     | (D) Kinetic energ                                  | у           | of                | emitted             |
|     | photoelectrons decrease                            | es          |                   |                     |
| 17. | The explosion of the a                             | tom         | nic bo            | mb takes            |
|     | place due to                                       |             |                   |                     |
|     | (A) Nuclear fission                                |             |                   |                     |
|     | (B) Nuclear fusion                                 |             |                   |                     |
|     | (C) Scattering                                     | _           |                   |                     |
|     |                                                    | I           |                   |                     |
| 18. | When yellow light is incl                          | ider        | nt on a           | a surface,          |
|     | no electrons are emitte                            | d w         | hile g            | reen light          |
|     | can emit. If red light i                           | is i        | ncide             | nt on the           |
|     | (A) No electrons are em                            | itteo       | 4                 |                     |
|     | (B) Photons are emitted                            |             | -                 |                     |
|     | (C) Electrons of higher e                          | ener        | gy ar             | e emitted           |
|     | (D) Electrons of lower er                          | nerg        | gy are            | emitted             |
| 19. | If <i>m</i> is mass of electron,                   | <i>v</i> it | s velo            | ocity, <i>r</i> the |
|     | radius of stationary circ                          | ular        | orbit             | around a            |
|     | nucleus with charge Ze                             | e, th       | en fro            | om Bohr's           |
|     | tirst postulate, the                               | k           | inetic            | energy              |
|     | $K = \frac{1}{2}mv^2$ of the electron              | n in        | C.G.              | S. system           |

is equal to



**20.** Light of frequency  $8 \times 10^{15} Hz$  is incident on a substance of photoelectric work function  $6.125 \ eV$ . The maximum kinetic energy of the emitted photoelectrons is

| (A) 17 <i>eV</i> | (B) 22 <i>eV</i> |
|------------------|------------------|
| (C) 27 <i>eV</i> | (D) 37 <i>eV</i> |

21 If the energy of a photon corresponding to a wavelength of 6000 Å is  $3.32 \times 10^{-19} J$ , the photon energy for a wavelength of 4000 Å will be

| (A) 1.4 eV        | (B) 4.9 <i>eV</i> |
|-------------------|-------------------|
| (C) 3.1 <i>eV</i> | (D) 1.6 <i>eV</i> |

- 22. The force acting between proton and proton inside the nucleus is
  (A) Coulombic
  (B) Nuclear
  (C) Both
  (D) None of these
- 23. Nuclear forces are

(A) Short ranged attractive and charge independent
(B) Short ranged attractive and charge dependent
(C) Long ranged repulsive and charge independent
(D) Long ranged repulsive and charge dependent

 The first line in the Lyman series has wavelength λ. The wavelength of the first line in Balmer series is

(A) 
$$\frac{2}{9}\lambda$$
 (B)  $\frac{9}{2}\lambda$   
(C)  $\frac{5}{27}\lambda$  (D)  $\frac{27}{5}\lambda$ 

25. The electron in a hydrogen atom makes a transition from an excited state to the ground state. Which of the following statements is true

(A) Its kinetic energy increases and its potential and total energies decrease

(B) Its kinetic energy decreases, potential energy increases and its total energy remains the same

(C) Its kinetic and total energies decrease and its potential energy increases

(D) Its kinetic, potential and total energies decreases

| 26. | In photoelectric effect, the K.E. of                                                          |
|-----|-----------------------------------------------------------------------------------------------|
|     | electrons emitted from the metal surface                                                      |
|     | depends upon                                                                                  |
|     | (A) Intensity of light                                                                        |
|     | (B) Frequency of incident light                                                               |
|     | (D) Both intensity and velocity of light                                                      |
|     |                                                                                               |
| 27. | In $_{88}$ Ra $^{226}$ nucleus, there are                                                     |
|     | (A) 138 protons and 88 neutrons                                                               |
|     | (B) 138 neutrons and 88 protons<br>(C) 226 protons and 88 electrons                           |
|     | (D) 226 neutrons and 138 electrons                                                            |
| 20  | Which one of the period of hydrogen                                                           |
| 20. | spectrum is in the visible region                                                             |
|     | (Å) Lyman series (B) Balmer series                                                            |
|     | (C) Paschen series (D) Bracket series                                                         |
| 29. | The ionization potential for second <i>He</i>                                                 |
|     | electron is                                                                                   |
|     | (A) 13.6 eV (B) 27.2 eV                                                                       |
|     |                                                                                               |
| 30. | An electron jumps from the 4 <sup>th</sup> orbit to the                                       |
|     | 2 <sup>nd</sup> orbit of hydrogen atom. Given the                                             |
|     | Rydberg's constant $R = 10^{\circ} cm^{\circ}$ . The frequency in Hz of the emitted radiation |
|     | will be                                                                                       |
|     | (A) $\frac{3}{16} \times 10^5$ (B) $\frac{3}{16} \times 10^{15}$                              |
|     | $(C) \stackrel{9}{=} 10^{15}$ $(D) \stackrel{3}{=} 10^{15}$                                   |
|     | (C) $\frac{16}{16} \times 10$ (D) $\frac{1}{4} \times 10$                                     |
| 31. | A beam of fast moving alpha particles                                                         |
|     | were directed towards a thin film of gold.                                                    |
|     | The parts $A', B'$ and $C'$ of the transmitted                                                |
|     | and reflected beams corresponding to the                                                      |
|     | incident parts <i>A</i> , <i>B</i> and <i>C</i> of the beam, are                              |

shown in the adjoining diagram. The number of alpha particles in



(A) B' will be minimum and in C' maximum
(B) A' will be maximum and in B' minimum
(C) A' will be minimum and in B' maximum
(D) C' will be minimum and in B' maximum

**32.** The radius of hydrogen atom in its ground state is  $5.3 \times 10^{-11} m$ . After collision with an electron it is found to have a radius of  $21.2 \times 10^{-11} m$ . What is the principal quantum number *n* of the final state of the atom

| (A) <i>n</i> = 4  | (B) <i>n</i> = 2 |
|-------------------|------------------|
| (C) <i>n</i> = 16 | (D) <i>n</i> = 3 |

- 33. The masses of neutron and proton are 1.0087 a.m.u. and 1.0073 a.m.u. respectively. If the neutrons and protons combine to form a helium nucleus (alpha particles) of mass 4.0015 a.m.u. The binding energy of the helium nucleus will be (1 a.m.u.= 931 MeV)
  (A) 28.4 MeV (B) 20.8 MeV
  (C) 27.3 MeV (D) 14.2 MeV
- **34.** The binding energy of deuteron  ${}_{1}^{2}H$  is 1.112 *MeV* per nucleon and an  $\alpha$  – particle  ${}_{2}^{4}He$  has a binding energy of 7.047 *MeV* per nucleon. Then in the fusion reaction  ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{4}He + Q$ , the energy Q released is (A) 1 *MeV* (B) 11.9 *MeV* (C) 23.8 *MeV* (D) 931 *MeV*

The de-Broglie wavelength of an electron in the first Bohr orbit is
 (A) Equal to one fourth the circumference of the first orbit
 (B) Equal to half the circumference of the first orbit

(C) Equal to twice the circumference of the first orbit

(D) Equal to the circumference of the first orbit

## (SECTION-B)

36. The shortest wavelength in the Lyman series of hydrogen spectrum is 912 Å corresponding to a photon energy of 13.6 eV. The shortest wavelength in the Balmer series is about
(A) 3648 Å
(B) 8208 Å
(C) 1228 Å
(D) 6566 Å

37. The kinetic energy of electron in the first Bohr orbit of the hydrogen atom is

| A) – 6.5 <i>eV</i> | (B) – 27.2 <i>eV</i> |
|--------------------|----------------------|
| C) 13.6 <i>eV</i>  | (D) – 13.6 <i>eV</i> |

| 38. | An electron changes its position from orbit $n = 4$ to the orbit $n = 2$ of an atom. The wavelength of the emitted radiation's is ( <i>R</i> = Rydberg's constant)<br>(A) $\frac{16}{2}$ (B) $\frac{16}{2}$                                                                                       |                                                                                                                                                                                                  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|     | (A) $\frac{1}{R}$                                                                                                                                                                                                                                                                                 | (D) $\frac{1}{3R}$                                                                                                                                                                               |  |  |
|     | (C) $\frac{16}{5R}$                                                                                                                                                                                                                                                                               | (D) $\frac{16}{7R}$                                                                                                                                                                              |  |  |
| 39. | Nuclear binding energy<br>(A) Mass of proton<br>(B) Mass of neutron<br>(C) Mass of nucleus<br>(D) Mass defect of nucle                                                                                                                                                                            | is equivalent to                                                                                                                                                                                 |  |  |
| 40. | Radius of first Bohr orbit is <i>r</i> . What is the radius of $2^{nd}$ Bohr orbit?                                                                                                                                                                                                               |                                                                                                                                                                                                  |  |  |
|     | (A) 8 <i>r</i>                                                                                                                                                                                                                                                                                    | (B) 2 <i>r</i>                                                                                                                                                                                   |  |  |
|     | (C) 4 <i>r</i>                                                                                                                                                                                                                                                                                    | (D) $2\sqrt{2r}$                                                                                                                                                                                 |  |  |
| 41. | The minimum orbital a<br>of the electron in hydrog<br>(A) h<br>(C) $h/2\pi$                                                                                                                                                                                                                       | ngular momentum<br>gen atom is<br>(B) h/2<br>(D) h/π                                                                                                                                             |  |  |
|     |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                  |  |  |
| 42. | Match the following :<br>Column I<br>(a) Photoelectric effect<br>(b) Wave<br>(c) X rays<br>(d) Nucleus<br>(A) $a - I$ , $b - II$ , $c - III$ , $c$<br>(B) $a - II$ , $b - I$ , $c - IV$ , $c$<br>(C) $a - II$ , $b - I$ , $c - III$ , $c$<br>(D) None of these                                    | Column II<br>I. Photon<br>II. Frequency<br>III. K capture<br>$IV. \gamma$ rays<br>d = IV<br>d = III<br>d = IV                                                                                    |  |  |
| 43. | If the nucleus $\frac{27}{13}$ AI has                                                                                                                                                                                                                                                             | a nuclear radius of                                                                                                                                                                              |  |  |
|     | about 3.6 fm, then $\frac{125}{52}$                                                                                                                                                                                                                                                               | <sup>;</sup> Te would have its                                                                                                                                                                   |  |  |
|     | radius approximately as                                                                                                                                                                                                                                                                           | :                                                                                                                                                                                                |  |  |
|     | (A) 6.0 fm                                                                                                                                                                                                                                                                                        | (B) 9.6 fm                                                                                                                                                                                       |  |  |
|     | (C) 12.0 Im                                                                                                                                                                                                                                                                                       | (D) 4.8 IM                                                                                                                                                                                       |  |  |
| 44. | Assertion : Neutrons<br>more readily as compar<br>Reason : Neutrons<br>massive than protons.<br>(A) If both assertion ar<br>and reason is the corr<br>assertion.<br>(B) If both assertion ar<br>but reason is not the co<br>assertion.<br>(C) If Assertion is true b<br>(D) If both assertion and | penetrate matter<br>ed to protons.<br>are slightly more<br>nd reason are true<br>rect explanation of<br>nd reason are true<br>rrect explanation of<br>ut reason is false.<br>d reason are false. |  |  |

| 45. | <ul><li>Fusion reaction takes place at high temperature because :</li><li>(A) nuclei break up at high temperature</li><li>(B) atoms get ionised at high temperature</li><li>(C) kinetic energy is high enough to overcome the coulomb repulsion between nuclei</li></ul>                                                                                                                                                                                                                                            |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | (D) molecules break up at high<br>temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 46. | Helium atom emits a photon of wavelength<br>0.1 A. The recoil energy of the atom due to<br>the emission of photon will be<br>(A) 2.04 eV (B) 4.91 eV<br>(C) 1.67 eV (D) 9.10 eV                                                                                                                                                                                                                                                                                                                                     |
| 47. | For the case discussed above,the wavelength of light emitted in the visible region by He <sup>+</sup> ions after collisions with H atoms is<br>(A) $6.5 \times 10^{-7}$ m (B) $5.6 \times 10^{-7}$ m                                                                                                                                                                                                                                                                                                                |
|     | (C) $4.8 \times 10^{-7}$ m (D) $4.0 \times 10^{-7}$ m                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 48. | If $\lambda_{Cu}$ is the wavelength of K <sub><math>\alpha</math></sub> X-ray line<br>of copper (atomic number 29) and $\lambda_{Mo}$ is<br>the wavelength of the K <sub><math>\alpha</math></sub> X-ray line of<br>molybdenum (atomic number 42), then the<br>ratio $\lambda_{Cu}/\lambda_{Mo}$ is close to                                                                                                                                                                                                        |
|     | (A) 1 99 (B) 2 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | (C) 0.50 (D) 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 49. | <ul> <li>Assertion : Photoelectric effect demonstrates the wave nature of light.</li> <li>Reason : The number of photoelectrons is proportional to the frequency of light.</li> <li>(A) If both assertion and reason are true and reason is the correct explanation of assertion.</li> <li>(B) If both assertion and reason are true but reason is not the correct explanation of assertion.</li> <li>(C) If Assertion is true but reason is false.</li> <li>(D) If both assertion and reason are false.</li> </ul> |
| 50. | The work function of a photosensitive<br>material is 4.0 eV. The longest wavelength<br>of light that can cause photon emission<br>from the substance is (approximately)                                                                                                                                                                                                                                                                                                                                             |

(A) 3100 nm (B) 966 nm (C) 31 nm (D) 310 nm