CLAS	SS :- 12 ^t	h							PAPE	ER COD	E :- CW	/Т	
CHA	PTER :-	ELECT	ROSTAT	E									
(D)	2	(\mathbf{C})	3	(B)		(B)	KEY 5	(\mathbf{C})	6	(\mathbf{C})	7		
(D)	2. 9	(C) (D)	3. 10	(D) (C)	4. 11	(B)	J. 12	(C) (C)	0. 13	(C) (D)	7. 14		
(D) (A)	16.	(D) (A)	17.	(C)	18.	(B)	19.	(C)	20.	(D)	21.		
(C)	23.	(R)	24.	(C)	25.	(B)	26.	(O) (A)	27.	(D) (A)	28.		
(B)	30.	(C)	31.	(C)	32.	(A)	33.	(A)	34.	(A)	35.		
(D)	37.	(B)	38.	(A)	39.	(B)	40.	(B)	41.	(A)	42.		
(D)	44.	(C)	45.	(D)	46.	(B)	47.	(B)	48.	(D)	49.		
50.	(B)												
					S	OLUTIO	NS		in the	un in como			
	SECTION-A						every event in the universe leads						
1. (D)							minii	misation	of ene	rgy.			
301.	1	e preser		leuluitt	IUICE		8.	(D)					
becor	mes $\frac{1}{K}t$	imes .					0		<i>F</i> =	$=k.\frac{Q^2}{2}$	(() =	- 1	
2.	(C)						501.	(D)		r ² . ľ	i ų is ha	١t	
•							is do	ubled th	F –	$\rightarrow \frac{1}{16}$ times	S		
3.	(B)						9.	(D)					
	$F \sim 1$	$1 \rightarrow \frac{F_1}{F_1}$	$\left(\underline{r_2}\right)^2$				Sol.	The	force	is perpe	ndicular	r	
Sol.	$r \propto -r$	$r^2 \rightarrow \overline{F_2}$	$\left(\frac{1}{r_1}\right)$				displ	acemer	nt.	-			
5	$(0.04)^2$	-E = 11	25 M				10	(\mathbf{C})					
$\overline{F_2} = \left(\frac{1}{0.06}\right)^{-1} = F_2 = 11.23 \text{ N}$							Sol	Flec	tric line	es force (due to n	۱ŕ	
4.	(B)						char		adially i	inward			
0.1	$n = \frac{Q}{2}$	$=\frac{1}{1}$	$\frac{1}{2} = 6.2$	25×10^{18}			Cital	ye ale i	aulally	liiwaiu.	,		
50I. 5	e (C)	1.6×1	0 1						×	× /			
•	(0)	`	Ω^2						→ (···	$\dot{\mathbf{A}}$	←		
Sol.	$ F_B $	$= F_C = k$	$k \cdot \frac{Q}{a^2}$										
		F	2	↑ <i>E</i> _C sir	ı				1		<		
-	F									I			
F	$B_B \cos \leftarrow$	60		[11.	(B)					
		F	[*] 60`\	♦ F _B sir	ו			-	V 1	0	0.11.1.2		
		ļ	, ,				Sol.	E =	$\overline{d} = \overline{2 \times d}$	$\frac{10^{-2}}{10^{-2}} = 50$	JU N / C		
			60				12.	(C)					
	_		a 00	C: →+Q			Sol.	Elec	tric li	nes of	force		
Henc	e force (<i>D</i> experien	iced by t	he char	ne at		inter	sect t	he co	onductor	r. The	ŗ	
A in t	he direct	tion norn	nal to <i>B</i> (Cis zero	yο αι		perp	endicula	ar and s	slightly c	curved n	16	
					-		surfa	ace of co	onducto	or.			
6.	(C)						13.	(D)					
Sol.	Ву		Q = Ne		or		Sol.	W =	qV = qE	.d			
$N = \frac{\zeta}{2}$	$\frac{2}{N}$ $\therefore N = -\frac{1}{N}$	80×10^{-6}	$- = 5 \times 10^{-10}$	14					1	_/			
е •	2 · · · · · · · · · · · · · · · · · · ·	$.6 \times 10^{-19}$	5 ~ 10							\rightarrow			
7. Sol	(U) Potor	ntial on	arav da	nondo	unon				2 <i>m</i>	∕ i →	•		
	LOIG		ergy de	heiling					60°	E	• x		
the cl	harge at	peaks c	or irregul	arities. S	since	1			Termina in	\rightarrow			

(8) $4 = 0.2 \cdot E \cdot (2 \cos 60^{\circ})$ = 0.2 $E \cdot (2 \cdot 0.5)$ $4 = \frac{4}{0.2} = 20 NC^{-1}$ **14.** (C) **Sol.** Lines of force is perpendicular to the equipotential surface. Hence angle = 90°

15. (A) $E = \frac{F}{q_0} \longrightarrow Newton \ / \ Coulomb$ Sol.

16. (A)

Sol. $V = \frac{kq}{R}$ *i.e.* $V \propto \frac{1}{R}$ 4 Potential on smaller sphere will be more.

17. (C)

Sol. $\Delta KE = qV = eV = e \times 1 = 1eV$

18. (B)

Sol.

$$=9\times10^{9}\times\frac{5\times10^{-6}}{(0.8)^{2}}=7\times10^{4} N/C$$

 $E = 9 \times 10^{9} \cdot \frac{Q}{r^{2}}$

19. (C)

Sol. $E = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Qr}{R^3} \otimes E \propto \frac{1}{R^3}$

20. (D)

Sol. (-particles are charged particles, so they can deflect by electric field.

21. (C)

Sol. Because electric field applies the force on electron in the direction opposite to it's motion.

22. (C)

Sol. Potential
$$V \propto \frac{1}{r} \Rightarrow V' = \frac{V}{2} = 8V$$

23. (B)

Sol. Given electric potential of spheres are same *i.e.* $V_A = V_B$

 $\frac{1}{4\pi\varepsilon_0} \cdot \frac{Q_1}{a} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q_2}{b} \Longrightarrow \frac{Q_1}{Q_2} = \frac{a}{b}$ R(i) as surface charge density $\sigma = \frac{Q}{4\pi r^2}$ $\frac{\sigma_1}{\sigma_2} = \frac{Q_1}{Q_2} \times \frac{b^2}{a^2} = \frac{a}{b} \times \frac{b^2}{a^2} = \frac{b}{a}$ 24. Sol. Electric field between sheets $E = \frac{1}{2\varepsilon_0} (\sigma - \sigma) = 0$ $E \neq 0 \begin{bmatrix} + & + \\ + & + \\ + & + \\ + & E = 0 & + \\ + & + \\ + & - \end{bmatrix} E \neq 0$ (B) 25. $\Delta E = 2e \times 5V = 10eV$ ® Final kinetic Sol. energy = 10 eV(A) 26. 27. (A) $V = Ed = \frac{3000}{3} \times 10^{-2} = 10 V$ Sol. 28. (B) 29. (B) Sol. Electric potential due to dipole in it's general position is given by $V = \frac{k.p\cos\theta}{r^2} \quad V \propto \frac{1}{r^2}$ 30. (C) Dipole moment p = q(2l)Sol. $= 3.2 \times 10^{-19} \times (2.4 \times 10^{-10}) = 7.68 \times 10^{-29} C - m$ 31. (C) Sol. 60° $p_{net} = \sqrt{p^2 + p^2 + 2pp \cos 60^\circ} = \sqrt{3} p = \sqrt{3} ql$ (:: p = ql32. (A) Sol.

$$E = 9 \times 10^{9} \cdot \frac{2p r}{(r^{2} - l^{2})^{2}};$$
 where

$$p = (500 \cdot 10^{-6}) \cdot (10 \cdot 10^{-2}) = 5 \cdot 10^{-5}$$

$$c \times m,$$

$$r = 25 \ cm = 0.25 \ m, \ l = 5 \ cm = 0.05 \ m$$

$$E = \frac{9 \times 10^{9} \times 2 \times 5 \times 10^{-5} \times 0.25}{\{(0.25)^{2} - (0.05)^{2}\}^{2}}$$

$$= 6.25 \times 10^{7} N/C$$

33. (A)

Sol. Suppose neutral point *N* lies at a distance *x* from dipole of moment *p* or at a distance x_2 from dipole of 64 *p*.

At $N \mid E. F.$ due to dipole $\Pi \mid = \mid E. F.$ due to dipole $\mathfrak{S} \mid$

$$\frac{1}{\Re} \cdot \frac{2p}{4\pi\varepsilon_0} \cdot \frac{2p}{x^3} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{2(64\,p)}{(25-x)^3}$$
$$\frac{1}{x^3} = \frac{64}{(25-x)^3} \quad \text{(B)} x = 5 \text{ cm}.$$

34. (A) **Sol.** By Gauss's theorem.

35. (B)

SECTION-B

36. (D) $\phi = \frac{\Sigma q}{\varepsilon_0} = 0$ **Sol.** $\phi = \frac{i.e.}{i.e.}$ net charge on dipole is zero. **37.** (B) **Sol.** According to Gauss's applications.

38. (A)Sol. Electron has negative charge, in electric field negative charge moves from lower potential to higher potential.

39. (B)

Sol. Electron and proton have same amount of charge so they have same coulomb force. They have different accelerations because they have different

masses $(a = \frac{F}{m})$

Therefore, both assertion and reason are true and reason is the correct explanation of the assertion.

40. (B)

Sol.

$$V_{inside} = \frac{Q}{4\pi\varepsilon_0 R}$$
 for $r \le R$ (i)
 $V_{out} = \frac{Q}{4\pi\varepsilon_0 r}$ for $r \ge R$ (ii)

i.e. potential inside the hollow spherical shell is constant and outside varies

according to $V \propto \frac{1}{r}$. **41.** (A)

Sol. Because of the presence of positive test charge q_0 in front of positively charged ball, charge on the ball will be redistributed, less charge on the front half surface and more charge on the back half surface. As a result of this net force *F* between ball and point charge will decrease *i.e.* actual electric field will be

greater than F/q_0 .

42. (C)
Sol. Electric field at a distance *R* is only due to sphere because electric field due to shell inside it is always zero. Hence

electric field =
$$\frac{1}{4\pi\varepsilon_0} \cdot \frac{3Q}{R^2}$$

43. (D)
Sol. $E_x = -\frac{dV}{dx} = -(6 - 8y^2),$
 $E_y = -\frac{dV}{dy} = -(-16xy - 8 + 6z)$
 $E_z = -\frac{dV}{dz} = -(6y - 8z)$
At origin $x = y = z = 0$ so, $E_x = -6, E_y = 8$
and $E_z = 0$
(B) $E = \sqrt{E_x^2 + E_y^2} = 10 N/C$.
Hence force $F = QE = 2 \times 10 = 20 N$

44. (C) **Sol.** Suppose third charge is similar to Q and it is qSo net force on it $F_{net} = 2F \cos(q)$

$$\Rightarrow \frac{220}{V_2} = \frac{1}{9}$$
$$\Rightarrow V_2 = 220 \times 9 = 1980 \text{ Volt}$$

49. (D) Sol. A → r

 $A \rightarrow r; B \rightarrow r \rightarrow C \rightarrow p$

Electric field due to metallic plates remains same and constant at near by points.

[A] For $\sigma_1 + \sigma_2 = 0 \Rightarrow \sigma_1 = -$

σ2

∴ Electric field at a point is equal & opposite in direction.

 $\sigma_1 + \sigma_2 = 0 \Rightarrow \sigma_1 = -\sigma_2$

 $[B] \qquad \sigma_1 + \sigma_2 > 0 \Rightarrow \sigma_1 \& \sigma_2$ [densities]

either both positive or opposite but positive has a greater magnitude. So the net electric field will be away from the plates in region I & III. [C] Same explanation according to

[B]_.

50. (B)

Sol. $A \rightarrow r; B \rightarrow r; C \rightarrow p$

(A) Electric field at a point is the vector sum of all individual fields at that point

(B) Electric flux
$$\iint \vec{E} \cdot d\vec{S} = \frac{q_{enc}}{\epsilon_0}$$

(C) Electric flux
$$\oint \vec{E} \cdot d\vec{S} = \frac{q_{enclosed}}{\epsilon_0}$$

