NEET ANSWER KEY & SOLUTIONS

PAPER CODE :- CWT-7

CHAPTER :- CENTRE OF MASS													
ANSWER KEY													
1.	(D)	2.	(B)	3.	(B)	4.	(C)	5.	(A)	6.	(D)	7.	(D)
8.	(C)	9.	(D)	10.	(C)	11.	(A)	12.	(B)	13.	(B)	14.	(D)
15.	(C)	16.	(B)	17.	(D)	18.	(C)	19.	(B)	20.	(D)	21.	(A)
22.	(C)	23.	(A)	24.	(C)	25.	(C)	26.	(B)	27.	(A)	28.	(D)
29.	(A)	30.	(B)	31.	(C)	32.	(D)	33.	(D)	34.	(A)	35.	(D)
36.	(B)	37.	(D)	38.	(B)	39.	(B)	40.	(A)	41.	(D)	42.	(C)
43.	(C)	44.	(A)	45.	(A)	46.	(A)	47.	(D)	48.	(A)	49.	(A)
50.	(C)												

	SOLU	TIONS
	SECTION-A	7.
1. Sol.	(D) Centre of mass is a point which can lie within or outside the body.	Sol.
2. Sol.	(B) Centre of mass is nearer to heavier mass	8. Sol.
3. Sol.	(B) we have $m_1 r_1 = m_2 r_2$ $\Rightarrow mr = 2m (3a - r) \Rightarrow r = 2a$	
4.	(C)	9. Sol.
5.	(A)	
Sol.	$A_1 = \pi R^2$ $A_2 = \frac{\pi R^2}{16}$	10.
	$x_1 = 0$ $x_2 = \frac{3R}{4}$	Sol.
	$x_{cen} = \frac{0 - \frac{\pi R^2}{16} \times \frac{3R}{4}}{\pi R^2 - \frac{\pi R^2}{16}} = -\frac{R}{20}$	
6.	(D)	
0.1	< x →< x	
501.	[⊣] mass of small element is dm = λdx = K(x/L) ⁿ dx	
	$x_{CM} = \frac{\int dm.x}{\int dm} = \frac{\int_{0}^{L} K.(\frac{x}{L})^{n} dx.x}{\int_{0}^{L} K.(\frac{x}{L})^{n} dx} =$	11. Sol.
	<u>(n + 1)L</u>	

SUBJECT :- PHYSICS

CLASS :- 11th

So, graph shown in option (D) is correct.

(D) In abscence of external force both move Sol. away from each other to keep the centre of mass at rest.

I.
$$V_{cm} = \frac{M_1 V_1 + M_2 V_2}{M_1 + M_2}$$

= $\frac{200 \times 10\hat{i} + 500(3\hat{i} + 5\hat{j})}{700} = 5\hat{i} + \frac{25}{7}\hat{j}$

(D) Э. V_{CM} = 0, because internal force cannot Sol. change the velocity of centre of mass

(C)

$$a = \frac{(nm-m)}{nm+m}g$$

$$= \frac{(n-1)}{(n+1)}g$$

$$a_{1} = a_{2} = a$$

$$a_{2} = a$$

$$a_{1} = a_{2} = a$$

$$a_{$$

×a

$$a_{\rm CM} = \frac{(n-1)^2}{(n+1)^2}g$$
.

11. (A)
Sol. Equation of motion
$$M\vec{g} + \vec{R} = M\vec{a}_{cm}$$

so $\vec{a}_{cm} = \frac{M\vec{g} + \vec{R}}{M}$

- $\vec{a}_{CM} = \frac{\vec{F}_{ext}}{m}$ Sol. $=\frac{3\hat{i}-2\hat{j}+2\hat{k}+(-\hat{i})+2\hat{j}-\hat{k}+\hat{i}+\hat{j}+\hat{k}}{6}$ $\vec{a}_{CM} = \frac{1}{2}\hat{i} + \frac{1}{6}\hat{j} + \frac{1}{3}\hat{k}$ $=\sqrt{\frac{1}{4}+\frac{1}{9}+\frac{1}{36}}=\sqrt{\frac{9+4}{36}+\frac{1}{36}}=$ $\frac{1}{6}\sqrt{13+1}$ $\frac{\sqrt{14}}{6}$ ms⁻²
- 13. (B)
- Sol. Friction force between wedge and block is internal i.e. will not change motion of COM. Friction force on the wedge by ground is external and causes COM to move towards right. Gravitational force (mg) on block brings it downward hence COM comes down.

14. (D)

Sol. Here : Mass of the body $m_1 = m$ Velocity of the first body $u_1 = 312 \text{ m/sec}$ Mass of second body at rest m₂ = 2m Velocity of second body $u_2 = 0$ After combination total mass of the body M = m + 2m = 3mNow from the law of conservation of momentum $Mv = m_1u_1 + m_2u_2$ (where M = m + 2m = 3m) $3mv = m \times 3 + 2m \times 0$ v = 1 km/hr

15. (C)
Sol. use
$$m_1v_1 = m_2v_2 = P$$

F.E. $= \frac{1}{2} mv_1^2 + \frac{1}{2} m_2v_2^2$
 $= \frac{1}{2} m_1 \left(\frac{P}{m_1}\right)^2 + \frac{1}{2} m_2 \left(\frac{P}{m_2}\right)^2 = \frac{1}{2}$

$$\frac{P^2(m_2 + m_1)}{m_1m_2}$$

16. (B)

Sol.
$$\frac{k_1}{k_2} = \frac{1}{2} \frac{P^2 / (m)}{P^2 / 2(4m)} = 4/1$$

17. (D)

Sol. Velocity of man w.r.t. train is zero so kinetic energy of man w.r.t. train = 0

18. (C)
Sol.
$$\vec{p}_1 + \vec{p}_2 = 0 \implies \vec{p}_1 = -\vec{p}_2$$

 $\implies |\vec{p}_1| = |\vec{p}_2|$

19. (B)

Sol. When the centre of mass remains at rest, it is possible that different individual forces do individual works though the net resultant force is zero. As work is a scalar quantity, they gets added up.

> Also, $\Sigma F_{ext} = 0$ a_{CM} = 0. \Rightarrow

20. (D)
Sol.
$$\Delta P = P_f - P_i = (-Mv) - (Mv) = -2Mv$$

21. (A)
22. (C)
Sol. by energy conservation $\frac{1}{2} mv^2 = \frac{1}{2}$ (2m)
 $\left(\frac{v}{2}\right)^2 + \frac{1}{2} kx^2$
 $\Rightarrow x = \sqrt{2mK}$

23.

(A)

Ś

Sol. Area of F-t curve = A = Impulse. Impulse = dP = A = mv - 0 $\therefore v = \frac{A}{M}$.

24. (C)

Impulse = ∫Fdt Sol. = Area under curve

$$=\frac{1}{2}$$
 (2) (2) = 2 kg-m/sec.

25. (C)

 $|(m_1\vec{v}_1 + m_2\vec{v}_2) - (m_1\vec{v}_1 + m_2\vec{v}_2)|$ Sol. = | Change in momentum of the two particles | = | External force on the system | × time interval $= (m_1 + m_2) g(2 t_0)$ $= 2(m_1 + m_2) gt_0$

26.	(B)
Sol.	$t = \frac{2d}{v_0}$ (time for succeesive collision)
	$N \times t = dP = mv_0 - (-mv_0)$
	$N \times \frac{2d}{v_0} = 2mv_0$
	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $
	d
27.	(A)
28.	(D)
29.	(A)
Sol.	$v_1 = \frac{(m_1 - em_2)u_1}{m_1 + m_2} + \frac{m_2(1 + e)u_2}{m_1 + m_2}$
	$= \frac{(m - e^{2m})u_1}{m + 2m} + \frac{2m(1 + e) \times 0}{m + 2m} = 0$ $\Rightarrow 0 = m - e^{2m} \Rightarrow e = 1/2$
30.	(B)
31.	(C)
32. Sol.	(D) $0.5 \times v_p + m \times 0 = 5.05 v$ $\therefore \frac{v_f}{v_i} = \frac{0.05}{5} = 10^{-2}$ $\Rightarrow \frac{\frac{1}{2}m(v_f)^2}{\frac{1}{2}m(v_i)^2} = (10^{-2})^2 = 10^{-4}.$
33. Sol.	(D) Kinetic energy remains conserved in elastic collision
34.	(A)
Sol.	$e = \frac{\text{velocity of seperation}}{\text{velocity of approch}} = 1$ for elastic collision.
35. Sol.	(D) In an inelastic collision, the particles do not regain their shape and size completely after collision. Some fraction of mechanical energy is retained by the colliding particles in the form of deformation potential energy. Thus, the kinetic energy of particles no longer remains conserved. However, in the absence of external forces, law of conservation of linear momentum still holds good.

SECTION-B

36.

Sol. According to Newton's Law

(B)

$$e = \frac{\vec{v}_2 - \vec{v}_1}{\vec{u}_1 - \vec{u}_2}$$

For elastic collision cofficient of restitution

 $\vec{v}_2 - \vec{v}_1 = \vec{u}_1 - \vec{u}_2$

Statement - 1 is correct Linear momentum is conserved in both elastic & non elastic collision but it's not the explanation of statement -1 so it is not the correct explanation of the statement A.

Sol.
$$F = \mu \frac{dm}{dt} \implies 210 = 300 \times \frac{dm}{dt}$$

 $\Rightarrow \frac{dm}{dt} = 0.7 \text{ kg/s.}$

38. (B)

Sol. Let Initial thrust of the blast be F then F – mg = ma

$$F = m (g + a) = 3.5 \times 10^{4} \times (10 + 10)$$
$$= 7 \times 10^{5} N$$

39. (B)

Sol. As no external force is acting on the system, the centre of mass must be at rest i.e. $v_{CM} = 0$.

_mO-

Sol.

$$\rightarrow x \qquad \bigcirc_{3m}^{2v}$$

From momentum conservation $m\upsilon\hat{i} + 3m(2\upsilon)\hat{j} = (4m) \vec{\upsilon}$

$$\vec{\upsilon} = \frac{\upsilon}{4}\hat{i} + \frac{6}{4}\upsilon\hat{j}$$
$$= \frac{\upsilon}{4}\hat{i} + \frac{3}{2}\upsilon\hat{j}$$

υ

41. (D) **Sol.** From momentum conservation

mu + 0 = 0 + (4m) V₂
$$\Rightarrow$$
 V₂ = $\frac{u}{4}$
e = $\frac{V_2}{u} = \frac{u_4}{u} = \frac{1}{4} = 0.25$

42. (C)

Sol. Statement-2 contradicts Newton's third law and hence is false.

44. (A)

Sol.
$$v_{cm} = \frac{1 \times 2 + \frac{1}{2} \times 6}{1 + 1/2} = \frac{10}{3} \text{ m/sec}.$$

- **45.** (A)
- **Sol.** vector sum of internal forces on system is zero.

46. (A)

47. (D)
Sol. by conservation of linear momentum
$$P_i = P_r$$

 $\Rightarrow mu = \frac{m}{4} \times 0 + \frac{3m}{4} \times V$
 $\Rightarrow v = \frac{4u}{3}$
48. (A)
Sol. Impulse = change in momentum = 2 mv
 $= 2 \times 0.06 \times 4 = 0.48$ kg m/s. Ans.
49. (A)

- **Sol.** Momentum conservation 5 × 10 + 20 × 0 = 5 × 0 + 20 × v Þ v = 2.5 m/s
- **50.** (C)

Sol.
$$m_G = \frac{m_B v_B}{v_G} = \frac{50 \times 10^{-3} \times 30}{1} = 1.5 \text{kg}$$