NEET : CHAPTER WISE TEST-2

SUBJECT :- PHYSICS				DATE	
CLASS :- 11 th			NAME		
CHAP	TER :- BASIC MATHS 8	& VECTOR		SECTION	
		(SECT	ION-A)		
1.	If $\vec{A} = \hat{i} + \hat{j}$ and $\vec{B} = 2\hat{i} + \hat{j}$ along $\vec{A} + \vec{B}$ is :	+3ĵ then unit vector	8.	Roots of the equ are (A) 3/2_4	uation $2x^2 + 5x - 12 = 0$, (B) $2/3 - 4$
	(A) î and ĵ 2i ₊ 4i	(B) $3\hat{i} + 4\hat{j}$		(C) $3/2, -4$	(D) 2/3, 4
	(C) $\frac{31+4j}{5}$	(D) 3î – 4ĵ	9.	The speed (v) of straight line is g	a particle moving along a given by v = t ² + 3t – 4
2.	Vector sum of the force be : (A) 10N (B) 4N	es of 5N and 4N can (C) 3N (D) 5N		where v is in m time t at which th come to rest	i/s and t in second. Find ie particle will momentarily
3.	If there are two vectors	\vec{A} and \vec{B} such that		(A) 3 (B) 4	(C) 2 (D) 1
	$\vec{A} + \vec{B} = \hat{i} + 2\hat{j} + \hat{k}$ and $\vec{A} - \vec{B} = (\hat{i} - \hat{k})$, then			$y = e^x \ell nx$	e ^x
	(A) the angle between	\vec{A} and \vec{B} is 60°		(A) $e^x \ln x + \frac{e}{x}$	(B) $e^x \ell nx - \frac{e}{x}$
	(B) $A = i + j$ (C) $\vec{B} = \hat{j} + \hat{k}$			(C) $e^x lnx - \frac{e}{x}$	(D) None of these
	(D) the angle between	\vec{A} and \vec{B} is 120°	11.	$y = \frac{2x+5}{3x-2}$	
4.	If $A = i + 2j + 3k & \&$ then the area of particular the second	B = 3i - 2j + k , arallelogram formed		(A) y' = $\frac{-19}{(3x-2)^2}$	(B) $y' = \frac{19}{(3x-2)}$
	with A and B as parallelogram is : (A) $\sqrt{3}$ (B) $8\sqrt{3}$	(C) 64 (D) 0		(C) $y' = \frac{-19}{(3x+2)}$	(D) y' = $\frac{-19}{(3x+2)^2}$
5.	Find v (0), where v (t) = (A) 5 (C) 3	= 3 + 2t (B) 6 (D) None	12.	The sum of the acting at a point these force is pe	magnitudes of two forces is 16 N. The resultant of erpendicular to the smaller
6.	tan15° is equilvalent to (A) $(2 - \sqrt{3})$: (B) (5+√3)		force and has a smaller force is value of x is	magnitude of 8 N. If the of magnitude x, then the
	$(C)\left(\frac{5-\sqrt{3}}{2}\right)$	$(D)\left(\frac{5+\sqrt{3}}{2}\right)$		(A) 2 N (C) 6 N	(B) 4N (D) 7N
7.	θ is angle between side CA and CB of triangle, shown in the figure then θ is given by :		13.	The resultant of if first force is do doubled . Then forces is :	two forces 3 P & 2 P is R, ubled, the resultant is also the angle between the
	3m	3m		(A) 30° (C) 120°	(B) 60° (D) 150°
	<u>Λ</u> θ C 4m	$ \longrightarrow_{A} $	14.	A force of 6 kg v	vt. and another of 8 kg wt.
	(A) $\cos\theta = \frac{2}{2}$ (B) $\sin\theta = \frac{\sqrt{5}}{2}$			can be applied effect of a single	together to produce the force of:
	(C) $\tan \theta = \frac{\sqrt{5}}{2}$	(D) $\tan\theta = \frac{2}{3}$		(A) 1 kg wt. (C) 15 kg wt.	(B) 11 kg wt. (D) 20 kg wt.

- A particle moves so that its position vector is given by r = cos ωt x + sin ωt ŷ. Where ω is a constant. Which of the following is true?
 (A) Velocity is perpendicular to r and acceleration is directed away from the origin.
 (B) Velocity and acceleration both are perpendicular to r .
 (C) Velocity and acceleration both are parallel to r .
 (D) Velocity is perpendicular to r and acceleration is directed towards the origin.
- 16. If the magnitude of sum of two vectors is equal to the magnitude of difference of the two vectors, the angle between these vectors is :
 (A) 180°
 (B) 0°
 (C) 90°
 (D) 45°
- **17.** Six vectors, \vec{a} through \vec{f} have the mangitudes and directions indicated in the figure.Which of the following statements is true ?

18. Assertion : If three vectors \vec{A}, \vec{B} and \vec{C} satisfy the relation $\vec{A}.\vec{B} = 0 & \vec{A}.\vec{C} = 0$ then the vector \vec{A} is parallel to $\vec{B} \times \vec{C}$. Reason : $\vec{A} \perp \vec{B}$ and $\vec{A} \perp \vec{C}$ hence \vec{A} is

> perpendicular to plane formed by \vec{B} and \vec{C} . (A) Both A and R are true and R is the correct explanation of A. (B) Both A and R are true but R is not correct explanation of A

- (C) A is true but R is false (D) A and R are false
- **19. Assertion** : A vector is a quantity that has both magnitude and direction and obeys the triangle law of addition.

Reason : The magnitude of the resultant vector of two given vectors can never be less than the magnitude of any of the given vector.

(A) Both A and R are true and R is the correct explanation of A.(B) Both A and R are true but R is not correct explanation of A

- (C) A is true but R is false
- (D) A and R are false

- 21. Given : $\vec{a} + \vec{b} + \vec{c} = 0$. Out of the three vectors \vec{a} , \vec{b} and \vec{c} two are equal in magnitude. The magnitude of the third vector is $\sqrt{2}$ times that of either of the two having equal magnitude. The angles between the vectors are: (A) 90°, 135°, 135° (B) 30°, 60°, 90° (C) 45°, 45°, 90° (D) 45°, 60°, 90°
- Two vectors A and B lie in a plane. Another vector C lies outside this plane. The resultant A + B + C of these three vectors

 (A) can be zero
 (B) cannot be zero
 (C) lies in the plane of A & B
 (D) lies in the plane of A & A + B
- 23. Find integrals of given function. $\int (1 - \cot^2 x) dx$ (A) 2x + cot x + C (C) 2x - cot x + C (D) 2x + tan x + C
- 24.Find the value of a if distance between the
point (-9cm, a cm) and (3cm, 3 cm) is 13 cm.
(A) 6 cm
(B) 8 cm
(C) 10 cm(A) 6 cm
(C) 10 cm(B) 8 cm
(D) 12 cm

25. If vector \vec{P} , \vec{Q} and \vec{R} have magnitude 5, 12 and 13 units and $\vec{P} + \vec{Q} = \vec{R}$ the angle between \vec{Q} and \vec{R} is -

(A) $\cos^{-1} \frac{5}{12}$ (B) $\cos^{-1} \frac{5}{13}$ (C) $\cos^{-1} \frac{12}{13}$ (D) $\cos^{-1} \frac{2}{13}$

- Following sets of three forces act on a body. Whose resultant can not be zero
 (A) 10, 10, 10
 (B) 10, 10, 20
 (C) 10, 20, 30
 (D) 10, 20, 40
- 27. The resultant of the forces P and Q is R. If Q is doubled then the resultant also doubles in magnitude. Find the angle between P & Q.

(A)
$$\cos \theta = \frac{Q}{2P}$$
 (B) $\cos \theta = \frac{-4Q}{3P}$
(C) $\cos \theta = \frac{-2Q}{3P}$ (D) $\cos \theta = \frac{-3P}{4Q}$

PG #2

- **28.** The horizontal component of a force of 10 N inclined at 30° to vertical is :
 - (A) 3 N (B) $5\sqrt{3}$ N (C) 5 N (D) $\frac{10}{\sqrt{3}}$ N
- **29.** If a, b, c are three unit vectors such that a + b + c = 0, then a.b + b.c + c.a is equal to (A) -1 (B) 3
 - (C) 0 (D) $-\frac{3}{2}$
- **30.** Two forces P and Q act at a point and have resultant R. If Q is replaced by $\frac{(R^2 - P^2)}{Q}$ acting in the direction opposite to that of Q, the resultant (A) remains same (B) becomes half
 - (C) becomes twice (D) becomes that (D) none of these

– 8k

ĵ−8k̂

31. There are two vectors $\vec{A} = 3\hat{i} + \hat{j} - 2\hat{k}$ and $\vec{B} = 4\hat{i} - 2\hat{j} - 6\hat{k}$. Find the unit vector along $\vec{C} = \vec{A} + \vec{B}$.

(A)
$$\frac{7\hat{i} - \hat{j} + 8\hat{k}}{\sqrt{114}}$$
 (B) $\frac{7\hat{i} - \sqrt{7}}{\sqrt{7}}$
(C) $\frac{7\hat{i} + \hat{j} - 8\hat{k}}{\sqrt{104}}$ (D) $\frac{7\hat{i} - \sqrt{7}}{\sqrt{7}}$

32. An object moves in the xy plane with an acceleration that has a positive x component. At t = 0 the object has a velocity given by $\vec{v} = 3\hat{i} + 0\hat{j}$. What can be concluded about the y component of the acceleration?

(A) The y component must be positive and constant

(B) The y component must be negative and constant

(C) The y component must be zero

(D) Nothing at all can be concluded about the y component.

- **33.** If \hat{S} is a unit vector in the direction of vector \vec{S} then
 - (A) $\hat{S} = S / \vec{S}$ (B) $\hat{S} = \vec{S} / S$ (C) $\hat{S} = \vec{S} \cdot \vec{S} / S^2$ (D) $\hat{S} - \vec{S} \cdot \left(\frac{\vec{S}}{S}\right)$
 - (C) $\hat{S} = \vec{S} \cdot \vec{S} / S^2$ (D) $\hat{S} = \vec{S} \cdot \left(\frac{\vec{S}}{S}\right)$
- 34. If the x component of a vector A
 , in the xy plane, is half as large as the magnitude of the vector, the tangent of the angle between the vector and the x axis is:

(A) √3	(B) 1/2
(C) √3 / 2	(D) 3/2

35. Three forces P, Q & R are acting at a point in the plane . The angle between P & Q and Q & R are 150° & 120° respectively, then for equilibrium, forces P, Q & R are in the ratio

(A) 1 : 2 : 3	(B) 1 : 2 : √3
(C) 3 : 2 : 1	(D) √3 : 2 : 1

(SECTION-B)

- 36. The maximum and minimum magnitude of the resultant of two vectors are 17 units and 7 units respectively. Then the magnitude of resultant of the vectors when they act perpendicular to each other is : (A) 14 (B) 16 (C) 18 (D) 13
- **37.** If $|\vec{A} + \vec{B}|^2 = A^2 + B^2$, then

(A) \vec{A} and \vec{B} must be parallel and in the same direction

(B) \vec{A} and \vec{B} must be parallel and in opposite directions

- (C) either \vec{A} or \vec{B} must be zero
- (D) none of the above is true

38. The angle between the vector $-\hat{i} + \hat{j}$ and $2\hat{i} + 3\hat{j}$ is :

(A)
$$\cos \theta = \frac{1}{5}$$
 (B) $\sin \theta = \sqrt{\frac{25}{26}}$
(C) $\tan \theta = \sqrt{5}$ (D) none of these

39. The vectors \vec{a}, \vec{b} and \vec{c} are related by $\vec{c} = \vec{a} + \vec{b}$. Which diagram below illustrates this relationship?

40. The vector -A is:
(A) greater than A in magnitude
(B) less than A in magnitude

(C) in the same direction as \vec{A}

(D) in the direction opposite to \vec{A}

41. Which of the following sets of displacements might be capable of bringing a car to its returning point?
(A) 5, 10, 30 and 50 km
(B) 5, 9, 9 and 16 km
(C) 40, 40, 90 and 200 km
(D) 10, 20, 40 and 90 km

46. 42. Match the integrals (given in column - II) with the given functions (in column - I) Column - I Column - II $(p) - \frac{\csc Kx}{K} + C$ (A) ∫ sec x tan xdx (B) $\int \csc Kx \cot Kx \, dx$ (q) $-\frac{\cot Kx}{K}$ + C 47. (C) $\int \csc^2 Kx dx$ (r) $\sec x + C$ (D) $\int \cos Kx \, dx$ (s) $\frac{\sin Kx}{\kappa}$ + C Statement-1 : If 43. rectangular the components of a force are 8 N and 6N. then the magnitude of the force is 10N. **Statement-2** : If $|\vec{A}| = |\vec{B}| = 1$ then 48. $|\vec{A} \times \vec{B}|^2 + |\vec{A} \cdot \vec{B}|^2 = 1$. (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True. Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (C) Statement-1 is True, Statement-2 is 49. False (D) Statement-1 is False, Statement-2 is True

- 44. The vectors \vec{A} and \vec{B} are such that $|\vec{A} + \vec{B}| = |\vec{A} - \vec{B}|$. The angle between vectors \vec{A} and \vec{B} is – (A) 90° (B) 60° (C) 75° (D) 45°
- **45.** If $|\vec{A} \times \vec{B}| = \sqrt{3} \vec{A} \cdot \vec{B}$, then the value of $|\vec{A} + \vec{B}|$ is :

(A)
$$\left(A^{2} + B^{2} + \frac{AB}{\sqrt{3}} \right)$$

(B) A + B
(C) $\left(A^{2} + B^{2} + \sqrt{3} AB \right)^{1/2}$

(D)
$$(A^2 + B^2 + AB)^{1/2}$$

- 46. Find the second derivative of given functions w.r.t. corresponding independent variable.
 y = sin x + cos x
 (A) sin x cos x
 (B) sin x + cos x
 (C) sin x + cos x
 (D) tan x cos x
- **47.** Suppose that the radius r and area A = πr^2 of a circle are differentiable functions of t.Write an equation that relates dA / dt to dr / dt.

(A)
$$2r \frac{dr}{dt}$$
 (B) $2\pi r \frac{dr}{dt}$
(C) $4\pi r \frac{dr}{dt}$ (D) $3\pi r \frac{dr}{dt}$

48. Find the torque $(\vec{\tau} = \vec{r} \times \vec{F})$ of a force $\vec{F} = -3\hat{i} + \hat{j} + 5\hat{k}$ acting at the point $\vec{r} = 7\hat{i} + 3\hat{j} + \hat{k}$ (A) $14\hat{i} - 38\hat{j} + 16\hat{k}$ (B) $4\hat{i} + 4\hat{j} + 6\hat{k}$ (C) $-14\hat{i} + 38\hat{j} - 16\hat{k}$ (D) $-21\hat{i} + 3\hat{j} - 5\hat{k}$

49. The moment of the force, $\vec{F} = 4\hat{i} + 5\hat{j} - 6\hat{k}$ at (2, 0, -3), about the point (2,-2,-2), is given by (A) $-7\hat{i} - 8\hat{j} - 4\hat{k}$ (B) $-4\hat{i} - \hat{j} - 8\hat{k}$ (C) $-8\hat{i} - 4\hat{j} - 7\hat{k}$ (D) $-7\hat{i} - 4\hat{j} - 8\hat{k}$

50. A particle moving with velocity V is acted by three forces shown by the vector triangle PQR.
 The velocity of the particle will :

(A) Increase

- (B) Decrease
- (C) Remain constant
- (D) Change according to the smallest force $\overrightarrow{\mathsf{QR}}$