JEE MAIN ANSWER KEY & SOLUTIONS

PAPER CODE :- CWT-9

CLASS :- 11th **CHAPTER :- CIRCLE**

SUBJECT :- MATHEMATICS

ANSWER KEY													
1.	(C)	2.	(A)	3.	(B)	4.	(A)	5.	(A)	6.	(A)	7.	(B)
8.	(A)	9.	(B)	10.	(D)	11.	(B)	12.	(B)	13.	(D)	14.	(A)
15.	(D)	16.	(C)	17.	(A)	18.	(D)	19.	(A)	20.	(C)	21.	32
22.	4	23.	0	24.	4	25.	62	26.	6	27.	4	28.	4
29.	4	30.	5										

1.	(C)

 $\cos \theta = \frac{3}{4} = \frac{x}{1} \implies x = \frac{3}{4} \implies AB = \frac{3}{2}$ Sol.

$$p = \sqrt{4^2 - 3^2} = \sqrt{7}$$
 and $c_3 M = \frac{\sqrt{7}}{4}$

$$\Rightarrow CM = \sqrt{7} - \frac{\sqrt{7}}{4} = \frac{3\sqrt{7}}{4}$$

$$\Rightarrow \qquad \mathsf{A} = \frac{3\sqrt{7}}{4} \cdot \frac{3}{2} \cdot \frac{1}{2} = \frac{9\sqrt{7}}{16}$$

2.

(A)

Sol. Let radius of the circle is (r,r) OE = DE = 1 - rapplying pythagoras theorem in $\triangle OEC$ $2(1-r)^2 = r^2$

$$\sqrt{2}$$
 (1 – r) = r

$$r (\sqrt{2} + 1) = \sqrt{2}$$

$$D = \sqrt{C} (1,1)$$

$$A = B$$

$$r = \frac{\sqrt{2}}{\sqrt{2} + 1} = \sqrt{2} (\sqrt{2} - 1) = 2 - \sqrt{2}$$

SOLUTIONS 3.

> Sol. $\angle OAP = \angle OBP = 90^{\circ}$

(B)

(Line From centre to tangent at point of contact is a⊥)

PA = PB (tangents from common external point to circle)

OA = OB (radius of same circle)

Hence, $\angle AOP = \angle BOP = 60^{\circ}$

Area of sector AOB = $\frac{\pi}{360} \times 120^\circ = \frac{\pi}{3}$

Area of quadrilateral BPOA = $2 \times area(\Delta POA)$

$$= 2 \times \frac{1}{2} \times 1 \times \sqrt{3} = \sqrt{3}$$

Hence, required area = area (PBOA) - area (sector AOB) = $\sqrt{3} - \frac{\pi}{2}$

4.

(A) Centre of the circle is (1, 2) and r = 1Sol. image of (1, 2) in x - y - 3 = 0 $\frac{b-2}{a-1} = -1 \qquad \Rightarrow a+b = 3 \quad \dots (1)$ $\frac{a+1}{2}$, $\frac{b+2}{2}$ lies on x - y = 3 also |(1, 2)|x - y - 3 = 0|(a, b)| $(a + 1) - (b + 2) = 6 \implies a - b = 7 \dots (2)$ from (1) and (2) a = 5 and b = -2Hence the required circle has the centre (5, -2) and r = 1 $(x-5)^2 + (y+2)^2 = 1 \implies x^2 + y^2 - 10x + 4y + y^2$ $28 = 0 \implies (A)$

- **5**. (A)
- **Sol.** $\operatorname{cosec15^{\circ}} = \frac{x}{1}$

x = cosec15°
R = x + 1 = 1 + cosec 15°

$$15^{\circ}$$

 15°
 1

$$= 1 + \frac{2\sqrt{2}}{\sqrt{3}-1} = 1 + \frac{4}{\sqrt{6}-\sqrt{2}} = 1 + \sqrt{6} + \sqrt{2}$$

6. (A)

Sol. Hypotenuse AB =
$$\sqrt{a^2 + b^2}$$

hence
$$D = \sqrt{b^2 + a^2}$$
(1)
Now $\frac{\Delta}{s} = \frac{ab}{2s}$

$$\therefore \frac{d}{2} = \frac{ab}{a+b+\sqrt{a^2+b^2}} \text{ or } d$$

$$= \frac{2ab}{a+b+\sqrt{a^2+b^2}} \qquad(2)$$

from (1) and (2) d + D

$$=\frac{\sqrt{a^{2}+b^{2}}\left[(a+b)+\sqrt{a^{2}+b^{2}}\right]+2ab}{a+b+\sqrt{a^{2}+b^{2}}}$$

$$= \frac{(a+b)^{2} + (a+b)\sqrt{a^{2} + b^{2}}}{a+b+\sqrt{a^{2} + b^{2}}}$$
$$= \frac{(a+b)\Big((a+b) + \sqrt{a^{2} + b^{2}}\Big)}{a+b+\sqrt{a^{2} + b^{2}}} = a+b$$

7. (B)
Sol.
$$h^2 + k^2 = 1 + 7$$

∴ locus of the point P is

$$x^2 + y^2 = 8$$

 $P(h,k)$
 $\sqrt{7}$
 $(0,0)$

This is the director circle of circle $x^2 + y^2 = 4$ $\therefore x^2 + y^2 = 8$ is director circle of a circle with radius = 2.]

8. Sol. (A)

$$m_{AB} = -1$$

$$m_{CM} = 1$$
equation of CM is
$$y = x$$
Let C(a, a)
Hence (CM)² = (AM)²

$$2(a-2)^{2} = 2 \implies (a-2)^{2} = 1$$

$$(a-2)^{2} = 2 \implies (a-2)^{2} = 1$$

$$(a,a)$$

$$(a,b)$$

$$(a$$

Sol. Using sine law

(B)

$$\frac{a}{\sin A} = 2R$$

15 = (R − x)(R + x)
15 = R² − x²
$$\Rightarrow$$
 x² = R² − 15 = 32 − 15 = 17
∴ x = $\sqrt{17}$ Ans.]

PRERNA EDUCATION

10. (D) Sol. Equation of the line / is y - 0 = m(x + 1)....(1)solving it with $x^2 + y^2 = 1$ $x^2 + m^2(x + 1)^2 = 1$ $(m^2 + 1)x^2 + 2m^2x + (m^2 - 1) = 0, m \in Q$ (-1,0) $x = \frac{-2m^2 \pm \sqrt{4m^4 - 4(m^4 - 1)}}{2(m^2 + 1)}$ $= \frac{-2m^2 \pm 2}{2(m^2 + 1)}$ taking – ve sign x = -1 (corresponding to A) with + ve signx = $\frac{1 - m^2}{1 + m^2}$ since $m \in Q$ hence x will be rational. If x is rational then y is also rational from (1)] 11. (B) $C_2 : (x - r)^2 + y^2 = r^2$ $C_1: x^2 + y^2 = r^2;$ Sol. solving for x C_2 (r, 0) \cap θ' $(x - r)^2 + r^2 - x^2 = r^2$ x - r = x or - x \therefore x = $\frac{r}{2}$ \therefore r cos $\theta = \frac{r}{2}$ $\theta = \frac{\pi}{3}$ $2\theta = \frac{2\pi}{3}$; length of C₁ inside C₂ = r(2\theta) = r $\cdot \frac{2\pi}{3}$ $=\frac{2\pi r}{3}$ Ans.] 12. (B) Let the equation of the requred circle be Sol. $x^{2} + y^{2} + 2gx + 2fy + c = 0$(i) It passes through (1,-2) and (4,-3)5 + 2g - 4f + c = 0.....(ii)

The centre (-g,-f) of (i) lies on 3x + 4y + 7-3g - 4f = 7(iv) Subtracting (ii) From (iii) 20 + 6g - 2f = 010 + 3g - f = 0(v) Soluing (iv) and (v) as simultaneous equations, we get

$$g = \frac{-47}{15}$$
 and $f = \frac{3}{5}$

Substituting the value of g and f in (ii)

$$5 - \frac{94}{15} - \frac{12}{5} + c = 0$$
$$c = \frac{55}{15} = \frac{11}{3}$$

Substituting the value of g , f & c in (i)

$$x^{2} + y^{2} - \frac{94}{15}x + \frac{6}{5}y + \frac{11}{3} = 0$$

or $15(x^{2} + y^{2}) - 94x + 18y + 33 = 0$

13. (D)

$$\mathbf{C} = \left(\frac{5}{2}, -1\right)$$

distance PC = $\sqrt{\left(\frac{5}{2} - 2\right)^2 + (-1 - 1)^2}$

$$r = \sqrt{\left(\frac{5}{2}\right)^2 + 1 + 5} = \sqrt{\frac{25}{4} + 1 + 5} = \sqrt{\frac{49}{4}} = \frac{7}{2}$$

$$=\sqrt{\frac{1}{4}+4} = \frac{\sqrt{17}}{2} < r$$

distance CA =
$$\sqrt{\left(\frac{5}{2}\right)^2 + (1)^2} = \sqrt{\frac{25}{4} + 1} = \frac{\sqrt{29}}{2}$$

distance RC =
$$\sqrt{\left(4-\frac{5}{2}\right)^2 + (-3+1)^2} = \sqrt{\frac{9}{4}+4}$$

$$=\frac{\sqrt{25}}{2}$$
 < r

_

∴ all points line inside circle

3

.....(iii)

25 + 8g - 6f + c = 0

]

Given $y = 1 + \sqrt{4 - x^2}$ Now curve is $(y-1)^2 = 4 - x^2 \Rightarrow x^2 + (y-1)^2 = 4$ Also line is y - 4 = k(x - 2), passing through (2, 4) with slope k.

Again for slope of PT, using condition of tangency we get

$$\left|\frac{-1+4-2k}{\sqrt{1+k^2}}\right| = 2 \Rightarrow (3-2k)^2 = 4(1+k^2) \Rightarrow 9$$

-12k = 4 \Rightarrow k = $\frac{5}{12}$
 \therefore For two distinct points of intersection, we

must have
$$\frac{5}{12} < k \le \frac{5}{4}$$
. Ans.

16. (C)

Sol. Clearly,
$$m_{CP} \times m_{AB} = -1$$

$$\Rightarrow \left(\frac{k-2}{h-3}\right) \times \left(\frac{k-8}{h-1}\right) = -1$$

:. Locus of (h, k) is (x - 1)(x - 3) + (y - 2)(y - 8) = 0

$$\begin{array}{c} C(3,2) \\ \hline \\ A \\ (h,k) \\ \hline \\ B \\ \hline \\ M(1,8) \end{array}$$

i.e., $x^2 + y^2 - 4x - 10y + 19 = 0$. Point P moves on circle with CM as diameter

:. Radius =
$$\frac{CM}{2} = \frac{\sqrt{2^2 + 6^2}}{2} = \sqrt{1+9} =$$

$$\sqrt{10}$$
 . Ans.]

17.

(A)

Sol. Clearly, centre and radius of circle $x^2 + y^2 - 2x - 2y = 0$

are (1, 1) and $\sqrt{2}$.

Let r be the radius of required circle.

Also,
$$\sin 30^\circ = \frac{\sqrt{2}(2-x)}{\sqrt{2}x} \Rightarrow \frac{1}{2} = \frac{2-x}{x} \Rightarrow$$
 Sol.
 $x = \frac{4}{3}$
 \therefore Centre $\left(\frac{4}{3}, \frac{4}{3}\right)$
Also, radius = $r = \sqrt{2}(2-x) = \sqrt{2}\left(2-\frac{4}{3}\right)$
 $= \sqrt{2}\left(\frac{2}{3}\right) = \frac{2\sqrt{2}}{3}$

18. Sol. (D)

Clearly, equation of chord of contact is $(4y - 1) + t (x - 2y) = 0, t \in \mathbb{R}$ $\Rightarrow L_1 + t L_2 = 0, t \in \mathbb{R}$

19.

Sol.

(A)

Let $\alpha = 2\theta$ length of perpendicular from 'O' on PQ i.e. *l*x +

$$p = \left| \frac{1}{\sqrt{l^2 + m^2}} \right|$$

$$p = \frac{1}{\sqrt{l^2 + m^2}}$$

If vertex C lies on the circle whose director circle has equation $x^2 + y^2 = 100$, then vertex C must lie on circle $x^2 + y^2 = 50$, whose centre is (0, 0) and radius = $5\sqrt{2}$. Also OA = OB = $5\sqrt{2}$, where O is the origin. (All the three vertices i.e. A, B and C lie on $x^2 + y^2 = 50$) Clearly O (0, 0) is circumcentre of triangle ABC.

Let C be $(5\sqrt{2}\cos\theta, 5\sqrt{2}\sin\theta)$

(C)

... On eliminating θ between equation (1) and (2), we get locus of orthocentre (h, k) of $\triangle ABC$, is $(x-2)^2 + (y-4)^2 = 50$ i.e., $x^2 + y^2 - 4x - 8y - 30 = 0$ **Ans.**]

21. 32
Sol.
$$S - S_1 = 0$$

 $(y - k)^2 - y^2 = 0$
 $k^2 - 2ky = 0$
 $k(k - 2y) = 0$
 $k = 2y \text{ or } 1 = \frac{2y}{k}$

The combined equation of the straight lines joining the origen to the points of intersection

$$y = \frac{k}{2} \& x^{2} + y^{2} = 16 \left(\frac{2y}{k}\right)^{2}$$

$$k^{2}x^{2} + (k^{2} - 64)y^{2} = 0$$
This equation represents a pair of \perp lines
$$k^{2} + k^{2} - 64 = 0$$

$$2k^{2} = 64$$

$$k^{2} = 32$$

Sol. Equation of S₃ is
$$(x-0)(x-1) + (y-0)^2 + \lambda y$$

= 0
i.e. $x^2 + y^2 - x + \lambda y = 0$
i.e. $\sqrt{\frac{1}{4} + \frac{\lambda^2}{4} - 0} = 1 \implies \lambda = \pm \sqrt{3}$
 \therefore Circle S₃ lie above x-axis $\implies \lambda = -\sqrt{3}$

Slope of line joining $c_1 \& c_2 = \sqrt{3}$

 \therefore Slope of common tangent is $\sqrt{3}$

i.e. $\sqrt{3} x - y + k = 0$ is required common tangent and touches circle S₁

$$\Rightarrow \left| \frac{k}{\sqrt{3+1}} \right| = 1 \Rightarrow k = \pm 2$$

$$\therefore \text{ For the given figure } k = 2$$

:. Required common tangent is $\sqrt{3} x - y + 2 = 0$

∴
$$a = \sqrt{3}$$
, $b = -1$,
∴ $(a^2 - b) = 3 + 1 = 4$

23. Sol.

0

The equation BC can be written as y = mx + 2solve $x^2 + y^2 = 1$ with y = mx + 2 $(m^2 + 1)x^2 + 4mx + 3 = 0$.

$$||^{ly} \quad \frac{(y-2)^2}{m^2} + y^2 = 1$$

$$(m^2 + 1)y^2 - 4y + (4 - m^2) = 0$$

$$y_1 + y_2 = \frac{4}{m^2 + 1}$$

$$3h = x_1 + x_2 + 1 \quad \text{and} \quad 3k = y_1 + y_2$$

$$3h = \frac{-4m}{m^2 + 1} + 1 \quad \text{and} \quad 3k = \frac{4}{m^2 + 1}$$

$$\frac{3h - 1}{3k} = -m$$

$$3k(m^2 + 1) = 4 \implies 3k\left(\left(\frac{3h - 1}{3k}\right)^2 + 1\right) = 4$$

$$\frac{(3h - 1)^2}{3k} + 3k = 4$$

$$x^2 + y^2 - \frac{2}{3}x - \frac{4}{3}y + 1 = 0.$$

$$a = \frac{-2}{3}; \quad b = \frac{-4}{3}, \quad c = \frac{1}{9}$$

$$(a + b + 18c) = 0. \text{ Ans.}]$$

24.

4

Sol. RA = $6x + 4y + c - cos\theta - sin\theta = 0$ It passes through (1, -1)

$$x^{2} + y^{2} - 2x + 2y + \cos\theta + \sin\theta = 0$$

$$x^{2} + y^{2} + 4x + 6y + \lambda = 0$$

$$6 - 4 + c = \cos\theta + \sin\theta$$

$$c = \cos\theta + \sin\theta - 2$$

$$c_{max} = \sqrt{2} - 2$$

$$c_{min} = -\sqrt{2} - 2$$

25.

sum = $\lambda_1 = -4$ $|\lambda_1| = 4$]

Sol.
$$A = \frac{1}{2} \cdot 8 \cdot 4 \sin \theta = |16 \sin \theta|$$

now $|\sin \theta| = |16 \sin \theta|$
 $A = \frac{1}{2} \cdot 8 \cdot 4 \sin \theta = \frac{1}{16}, \frac{2}{16}, \dots, \frac{15}{16}$
 $C(4 \cos \theta, 4 \sin \theta)$
 $(4,0)$
B
i.e. 15 points in each quadrant
 $\Rightarrow \quad 60 + 2 \text{ more with } \sin \theta = 1$
 $\Rightarrow \quad \text{total} = 62 \text{ Ans.}$

:. circle : $x^2 + y^2 - 8x - 6y + c = 0$ 26. 6 Sol. $x - 2 - m_1 (y + 2) = 0$ $r^2 = 25 - c = \frac{25}{4} + \frac{9}{4} - 8$ $x - 2 - m_2(y + 2) = 0$ Both lines are passing through (2, -2) and tangents to the circle $(x - 1)^2 + (y - 1)^2 = 2$ Applying p = r*.*.. x - my - 2 - 2m = 0 $\frac{1-m-2-2m}{\sqrt{1+m^2}} = \sqrt{2}$ $c = 25 - \frac{1}{2} = \frac{49}{2}$ (1, 1) $\therefore \frac{r+a+c}{8} = \frac{\frac{3}{2} + \frac{49}{2} + 6}{\frac{9}{2}} = \frac{26+6}{8} = 4 \text{ Ans.}]$ $(3m + 1)^2 = 2(1 + m^2)$ $7m^2 + 6m - 1 = 0$ \Rightarrow \Rightarrow 29. \Rightarrow m = $\frac{1}{7}$, -1 Sol. x (x - a) + y(y - b) = 0 $x^2 - ax - by + y^2 = 0$ $\therefore \qquad \frac{1}{1} + \frac{1}{(-1)} = 7 - 1 = 6$ $\left(3\sqrt{2}\right)^2 = \frac{a^2}{4} + \frac{b^2}{4}$ 27. 4 AP = AP'Sol. (0, b) \Rightarrow (h - 1)² + (k - 1)² = 1 + 1 = 2 \therefore radius of circle = $\sqrt{2}$ A(a, 0) l_2 ₩[¬]P' (h, k) $a^2 + b^2 = 72$ (1, 2)3h = a, 3k = bLocus of centroid $x^2 + y^2 = 8$ \therefore maximum distance = $\sqrt{5} + \sqrt{2}$ $r = 2\sqrt{2}$ and minimum distance = $\sqrt{5} - \sqrt{2}$ Radius of director circle = 4 Ans.] 30. 5 \therefore Sum, S = 2 $\sqrt{5} \Rightarrow$ [S] = 4 Ans. $C_1C_2 = r + 1$ $\sqrt{(r-3)^2 + 4} = r + 1$ Sol. 28. Sol. tangent at (2, 2): $(r-3)^2 + 4 = (r + 1)^2 = r^2 + 2r + 1$ $2x + 2y - \frac{5}{2}(x + 2) - \frac{3}{2}(y + 2) + 8 = 0$ $\frac{-x}{2} + \frac{y}{2} = 0 \implies y = x$ C₂(r,3) В cc': $\frac{x-\frac{5}{2}}{\cos 45^{\circ}} = \frac{y-\frac{3}{2}}{\sin 45^{\circ}} = \sqrt{2} r \implies c' =$ y = mx 3 $\left(\frac{5}{2}+\mathbf{r}\cdot\frac{3}{2}+\mathbf{r}\right)$ OA = OP = 3and OP = OB = 3 $\frac{5}{2} + r = 4 \implies r = \frac{3}{2}$ $r = \frac{3}{2} \equiv \frac{p}{q}$ 8r = 12 ⇒ \Rightarrow \Rightarrow c' (4, 3) *.*.. p + q = 5 **Ans**.]