
JEE MAIN ANSWER KEY & SOLUTIONS

SUBJECT :- MATHEMATICS													
	CLASS :- 11 th PAPER CODE :- CWT-8 CHAPTER :- STRAIGHT LINE											-8	
	ANSWER KEY												
1. 8. 15. 22. 29.	(C) (A) (A) 6 6	2. 9. 16. 23. 30.	(A) (B) (B) 4 3	3. 10. 17. 24.	(A) (C) (B) 5	4. 11. 18. 25.	(A) (C) (D) 3	5. 12. 19. 26.	(D) (C) (A) 20	6. 13. 20. 27.	(A) (B) (A) 2	7. 14. 21. 28.	(B) (B) 6 4
	SOLUTIONS												
1.	(C)						3.	(A)					
Sol.	∴ slop	e of line	$\Delta \Delta (:= -$		$\frac{4\cos\alpha}{4\sin\alpha}$		Sol.	$\tan \theta = \frac{a-1}{3} = \frac{7-a}{10-b}$					
			_	$\frac{\sin \alpha - \cos \alpha}{\cos \alpha + \sin \alpha}$	inα			also $\tan \theta = \frac{7-4}{b-3} = \frac{3}{b-3}$					
	∴ eq ⁿ 4cos α		y – 4sin	$\alpha = \frac{\sin}{\cos^2 \alpha}$	$\frac{1}{100} \alpha - \cos \alpha + \sin \alpha$	$\frac{5\alpha}{1\alpha}(x -$		hence $\frac{3}{b-3} = \frac{a-1}{3} = \frac{7-a}{10-b}$					
	$(-4\sin\alpha, 4\cos\alpha) \xrightarrow{A} \xrightarrow{D} C (4\cos\alpha, 4\sin\alpha)$ B (0, 0) y cos α + y sin α - 4 sin α · cos α - 4 sin ² α = x sin α - x cos α - 4 sin α cos α + 4 cos ² α x (cos α - sin α) + y (cos α + sin α) = 4							Q(0,7)	θ $00^{\circ}-\theta$ 7-a (3,4) θ a-1 B'(13,1)				
2. Sol.	(A) Mid point of QS = Mid point of PS $0 = h + x_1$ $\Rightarrow x_1 = -h$ hence p (-h, 0) equation of PQ = y = mx + c passes through (-h, 0) c = mh $S(-a, y_2)$ P(x,0) x = -a \therefore y = mx + mh since Q lies on it \Rightarrow y ₁ = ma + mh now m _{QR} = $-\frac{1}{m} = \frac{y_1 - K}{a - h}$ $-\frac{1}{m} = \frac{m(a - h) - K}{a - h}$ simplifying h + mk = a + (a + h)m ² \Rightarrow a st. line]						4. Sol.	from 1 st two relations 9 = ab - b - 3a = 3 3a + 6 = ab - b(1) from last two 10a - ab - 10 + b = 21 - 3a 13a - ab + b = 31 or ab - b = 13a - 31(2) hence from (1) and (2) 3a + 6 = 13a - 31 \Rightarrow 10a = 37 \Rightarrow a = 3.7 Ans.] (A) First two family of lines passes through (1, 1 and (3, 3) respectively. \Rightarrow Point of intersection of lines belonging to third family of lines will lie on the line y = x. $\Rightarrow \alpha x + x - 2 = 0$ and $6x + \alpha x - \alpha = 0 \Rightarrow$ $\frac{2}{\alpha + 1} = \frac{\alpha}{\alpha + 6} \Rightarrow 2\alpha + 12 = \alpha^2 + \alpha$ $\Rightarrow (\alpha - 4) (\alpha + 3) = 0 \Rightarrow \alpha = 4 \text{ or } -3$					

1

5. (D)
8
Sol.
$$m_{AB} = \frac{2}{p}$$
; $m_{ST} = -\frac{p}{2}$; mid point of $AB = \frac{p}{2}$, 5
equation of TS $y - 5 = -\frac{p}{2}\left(x - \frac{p}{2}\right)$
 $y \longrightarrow (0,4) \longrightarrow (0,4)$

(0, 0)A^I (a,0) (2a,0) C(10,0
∴ Area =
$$\frac{400}{49}$$
 Ans.]

Equation of BNO $\frac{x}{4} + \frac{y}{h+4} = 1$... (2)

Eliminating h from (1) and (2), we get $x^2 + 2xy - 16 = 0$

(A) _ Sol. let the equation of a line is $\frac{x}{a} + \frac{y}{b} = 1;$ passes through (2, 3); ab = 22 (given $\Delta = 11$) $\frac{2}{a} + \frac{3}{b} = 1 \implies$ 2b + 3a = ab $(2b + 3a)^2 = a^2b^2$ $4b^2 + 9a^2 + 12ab = a^2b^2$ $4b^2 + 9a^2 = (ab)^2 - 12ab = 484 - 264 = 220$ Ans. Alternatively: Area of D = $a_1 + a_4 + a_4$ Area of rectangles OBRQ + OETA (0,b)B ^a2 P(2,3) a₆ Е \overline{O} <u>A(a,0)</u> $= (a_1 + a_2 + a_3) + (a_3 + a_4 + a_5)$ $= 2(a_1 + a_3 + a_4)$ = 2 area of $\triangle AOB = 2\left(\frac{ab}{2}\right) = 22 \Rightarrow ab = 22$ hence 2a + 3b = 22 or $(2a + 3b)^2 = 484$ $4a^2 + 9b^2 + 12ab = 484$ $4a^2 + 9b^2 = 484 - 12(22)$ = 484 - 264 = 220 Ans.] (B) 9. Sol. Let C(a, b) Co-ordinates of G : $\frac{2 + (-2) + a}{3} = \frac{5}{3}$ \Rightarrow a = 5 $\frac{1-2+b}{3} = \frac{1}{3} \implies b=2$ B(-2, 1) $C\left(\frac{3}{2},\frac{3}{2}\right)$ A(2, -2) $\overline{C}(5, 2)$ Hence C(5, 2) $\triangle ABC$ is right $\angle \Delta$

 \therefore circumcentre of $\triangle ABC$ is mid point of BC

 \therefore Co-ordinates of circumcentre is $\left(\frac{3}{2}, \frac{3}{2}\right)$

PRERNA EDUCATION

2

10. (C)14. (B) Equation of L₂, $y - \frac{11}{6} = \frac{-6}{5} \left(x - \frac{1}{2} \right)$ Sol. Sol. if $y = \frac{1}{30}$, $\frac{1}{30} - \frac{11}{6} = \frac{-6x}{L_2} + \frac{3}{5}$ $\frac{1}{6} - \frac{55}{6} - 3 = -6x$ $6x = 3 + \frac{54}{6} = 12$ $\left|\left(\frac{1}{2},\frac{11}{6}\right)\right|$ x = 2 Ans.] L_2 with slope = 6/5 11. (C) Sol. Equation of family of lines through AB & AC $(px + qy - 1) + \lambda (qx + py - 1) = 0 \dots (1)$ 15. Let this be equation of AD Sol. it passes through D(p, q) \Rightarrow (p² + q² -1) + λ (pq + pq - 1) = 0 $\lambda = \frac{-\left(p^2 + q^2 - 1\right)}{2pq - 1}$ (p,q)R Put in equation (1) $(px+qy-1)-\frac{(p^2+q^2-1)}{2pq-1}(qx+py-1)=0$ 16. Sol $\Rightarrow \big(2pq-1\big)\big(px+qx-1\big) = \Big(p^2+\frac{q^2-1}{q}\big)\big(qx+py-1\big)$ 12. $3x - 4y + 6 + \lambda(x + y + 2) = 0$ Sol. slope = $-\frac{3+\lambda}{\lambda-4} = -1 \Rightarrow 3+\lambda=\lambda-4$ hence slope is $= -\left(\frac{(3/\lambda)+1}{1-(4/\lambda)}\right) = -1$ line is x + y + 2 = 0 Ans. 13. (B) $2^{2} + (x_{1} - 1)^{2} = x_{1}^{2}$ $4 + x_{1}^{2} + 1 - 2x_{1} = x_{1}^{2}$ $5 = 2x_{1} \text{ or } x_{1} = 5/2$ Sol. equation of the altitude from (2, 5/2) is 17. Sol. (0, 1) $(0, \overline{0})$ -5/2 = 2(x - 2) $2y - 5 = 4(x - 2) \Rightarrow 4x - 2y - 3 = 0$ solving it with y = 1, x = 5/4 Ans.]

mx + b = bx + m(m - b)x = m - b \Rightarrow x = 1(m \neq b since for m = b, x coordinate will become zero) \Rightarrow m – b = 1 (as x coordinate of the point of intersection of the lines is m - b) $x = 1 \implies y = b + m = 9$ b + 1 + b = 9 (m = 1 + b) \therefore b = 4 and m = 5 sum of x-intercepts of lines is $-\left(\frac{b}{m}+\frac{m}{b}\right) = -\left(\frac{4}{5}+\frac{5}{4}\right) = -\frac{41}{20}$ Ans.] (A) We have $(a + c)^2 + 4b^2 - 4ab - 4bc = 0$ $(a + c)^2 + (2b)^2 - 4b(a + c) = 0$ $a^{2} + 2a(c - 2b) + c^{2} + 4b^{2} - 4bc = 0$ $a^{2} + 2a (c - 2b) + (c - 2b)^{2} = 0$ $(a + c - 2b)^2 = 0 \implies a = 2b - c$ $(2b-(a+c))^2 = 0 \Rightarrow a, b, c are in A.P.$ \Rightarrow \Rightarrow ax + by + 2b - a = 0 (Put c = 2b - a) \Rightarrow a (x – 1) + b (y + 2) = 0 \Rightarrow (x – 1) + λ (y +2) = 0so, fixed point is (1, -2) Ans.] (B)

The vertex A is
$$(2, -1)$$

Let's drow a \perp AM with length 'd'
Now, as $\triangle ABC$ is equilateral
BC = mc = x
 $\therefore d = \left|\frac{2-1-2}{\sqrt{2}}\right| = \frac{1}{\sqrt{2}}$
Now in $\triangle AMC$, $\angle C = 90^{\circ}$
 $\therefore \frac{d}{x} = \tan 60^{\circ}$
 $\therefore x = \frac{1}{\sqrt{6}}$
BC = $2x = \frac{2}{\sqrt{6}}$ is the length
Area of $\triangle = \frac{\sqrt{3}}{4} \times (\text{length})^2 = \frac{\sqrt{3}}{4} \times \frac{4}{6} = \frac{\sqrt{3}}{6}$

(B)

Let shortest distance between the cheese and the line y = -5x + 18 is the line that passes through (12, 10) and is perpendicular to it. The

equations of this line is $y = \frac{x}{5} + C$ put x = 12 and y = 10 we get

$$C = \frac{38}{5} \Rightarrow \text{ equation of PN is } y = \frac{x}{5} + \frac{38}{5}$$

20.

Sol.

18. (D)

Sol. $x + a(a^2 + 1)y = a$

$$\frac{x}{a} + \frac{y}{\left(\frac{1}{a^2 + 1}\right)} = 1$$

 \therefore Area of triangle formed by the straight line and co-ordinate axes is –

$$= \frac{1}{2} \cdot \frac{a}{a^2 + 1} = \frac{1}{2} \cdot \frac{1}{a + \frac{1}{a}}$$
$$\leq \frac{1}{2} \cdot \frac{1}{2} \left(\therefore a + \frac{1}{a} \ge 2 \right)$$
$$\leq \frac{1}{4} \text{ Ans.}]$$

19. (A)

Sol. We have,
$$\frac{x}{a} + \frac{y}{b} = 1$$

As, (x, y) lies on it, so
 $bx + ay - ab = 0$.
(a,b)
(a,b)
(a,b)
(a,y)
(0,0)O
(x,0)
(a,y)
(a,y)
(x,0)
(a,y)
(x,0)
(a,y)
(x,0)
(a,y)
(x,0)
(x

(A)

$$\frac{k - y_{1}}{h - x_{1}} = -\frac{1}{2}$$

$$2k - 2y_{1} = x_{1} - h$$

$$x_{1} + 2y_{1} = h + 2k \qquad \dots(1)$$
again $M\left(\frac{h + x_{1}}{2}, \frac{k + y_{1}}{2}\right)$ lies on $y = 2x$

$$\int_{0}^{y_{1}} \int_{0}^{(x_{1},y_{1})/y} y^{y=2x}$$

$$\int_{0}^{y_{1}} \int_{0}^{(h,k)} y^{y=2x} = 2\left(\frac{h + x_{1}}{2}\right) \implies 2h + 2x_{1} = k$$

$$+ y_{1}$$

$$2x_{1} - y_{1} = -2h + k \qquad \dots(2)$$
solving (1) and (2) for x_{1}, y_{1} , we get

$$x_{1} = \frac{4k - 3h}{5}; y_{1} = \frac{4h + 3k}{5}$$

$$\therefore \qquad x_{1}y_{1} = 1$$

$$(4k - 3h)(4h + 3k) = 25$$

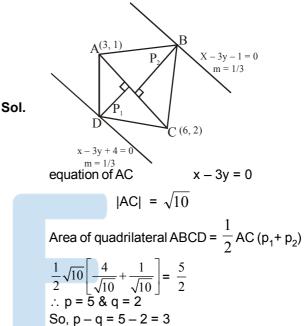
$$12h^{2} - 7kh - 12k^{2} + 25 = 0$$

$$\therefore \qquad b_{1} = -7; \ c_{1} = -12; \ d_{1} = 25$$
So, $(b + c + d) = 6$ Ans.]
6
Here, PA = r, PC = s
Also, PB = r

$$\therefore Area (\Delta PCB) = \frac{1}{2} (BC) (PT) = \frac{1}{2} (12) (6)$$

$$= 36$$

$$D \longrightarrow A = 36.$$
So, $\sqrt{\Delta} = 6.$]


4

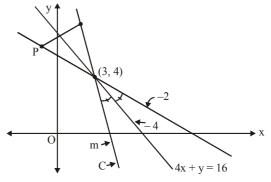
21. Sol. 22. 6 Sol. Equation of I_1 , I_2 , I_3 and I_4 are(1) $\rightarrow l_1$ y = mx + 1y = mx + m x + my = 0 my + x = 1 distance between l_1 and l_2 = distance between I_3 and I_4 $\therefore \left| \frac{m-1}{\sqrt{1+m^2}} \right| = \frac{1}{\sqrt{1+m^2}} \Rightarrow |m-1| = 1 \Rightarrow$ $m - 1 = \pm 1$ m = 2; m = 0 (rejected) So, side of the square = $\frac{1}{\sqrt{5}}$ 1,0) \Rightarrow Area = $\frac{1}{5}$ \Rightarrow (p + q)_{least} = 6. Ans.] 23. $L_1 : y = x + 2, \quad L_2 : x + y = 2$ Sol. :. Area ($\triangle ABC$) = $\frac{1}{2}$ (4)(2) = 4 **Ans.**] 24. 5 Sol. Equation of altitudes through A, B, C are y = x, x = 2y, x = 3ylet A (α , α), B(2 β , β), C(3 γ , γ) $\therefore \text{ Slope of AB} = \frac{\beta - \alpha}{2\beta - \alpha} = -3 \implies \beta = \frac{4\alpha}{7}$ Slope of BC = $\frac{\gamma - \beta}{3\gamma - 2\beta} = -1 \implies \frac{7\gamma - 4\alpha}{21\gamma - 8\alpha} =$

$$\therefore \text{ Centroid} = \left(\frac{\alpha + 2\beta + 3\gamma}{3}, \frac{\alpha + \beta + \gamma}{3}\right) = (x, y)$$
$$\therefore \qquad \frac{y}{x} = \frac{\alpha + \beta + \gamma}{\alpha + 2\beta + 3\gamma} = \frac{\alpha + \frac{4\alpha}{7} + \frac{3\alpha}{7}}{\alpha + \frac{8\alpha}{7} + \frac{9\alpha}{7}}$$
$$= \frac{14\alpha}{24\alpha} = \frac{7}{12} \equiv \frac{m}{n}$$
$$\therefore (n - m) = 12 - 7 = 5. \text{ Ans.}]$$

25.

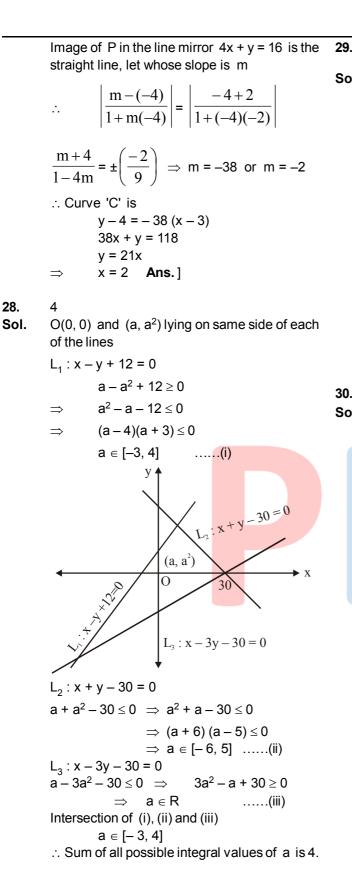
3

26. 20


Sol. Equation of line $\frac{ax}{c-1} + \frac{by}{c-1} + 1 = 0$ has two independent parameter 5a + 5b + 20 c = t5a + 5b = t - 20 c $\frac{5a}{c-1} + \frac{5b}{c-1} = \frac{t-20c}{c-1}$

R.H.S. be independent of c if t = 20

27.


2

Sol. Point $P = (3 + r \cos \alpha, 4 + r \sin \alpha)$ lies on the line passing through (3, 4) and $\tan \alpha = -2$.

 $-1 \Rightarrow \gamma = \frac{3}{7} \alpha$

28.

-	6
ol.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$OM_r = OA_{r+1} + \frac{OA_r - OA_{r+1}}{2} =$
	$\frac{OA_{r} + OA_{r+1}}{2} = \frac{OA_{l}\left(\frac{1}{2}\right)^{r-1} + (OA_{1})\left(\frac{1}{2}\right)^{r}}{2}$
	$OM_{r} = OA_{r} \cdot \frac{3}{2^2} \left(\frac{1}{2}\right)^{r-1} = OA_{1} \cdot 3 \cdot \left(\frac{1}{2}\right)^{r+1}$
	$\sum_{r=1}^{\infty} OM_r = 3 \cdot OA_1 \cdot \frac{\frac{1}{4}}{1 - \frac{1}{2}} = \frac{3}{2} OA_1 = 6 \text{ Ans.}]$
ol.	3 \therefore 1 and 2 lies between roots, $(t_{1}, 5) \neq (1) < 0$

$$\therefore (k-5) f(1) < 0$$

$$\Rightarrow (k-5) (k-5-2k+k-4) < 0$$

$$\Rightarrow (k-5) (-9) < 0 \Rightarrow k-5 > 0 \Rightarrow k > 5$$
and $(k-5) f(2) < 0$

$$\Rightarrow (k-5) (4(k-5)-4k+k-4) < 0$$

$$\downarrow 1 \quad 2$$

$$\Rightarrow (k-5) (k-24) < 0 \Rightarrow 5 < k < 24$$

$$\therefore k \in (5, 24)$$
prime numbers = 7, 11, 13, 17, 19, 23

$$\therefore p = \left(\frac{31}{3}, \frac{59}{3}\right)$$

:.
$$\frac{p+q}{10} = \frac{\frac{90}{3}}{10} = 3$$
 Ans.]

6