		WISET	EST PAPER-8
SUB.IF	CT :- MATHEMATICS		DATE
CLASS :- 11 th			NAME
CHAPTER :- STRAIGHT LINE			SECTION
	(SECT	ION-A)	
1.	One side of a square is inclined at an acute	7.	A = (-4, 0), B = (4, 0), M and N are variable points
	angle α with the positive x-axis and one of its		on v-axis such that M lies below N and $MN = 4$.
	extremities is at the origin. If the remaining three		If the line joining AM and BN intersect at P, then
	vertices of the square lie above the x-axis and		locus of P is-
	the side of a square is 4, then the equation of		(A) $2xy + 16 + x^2 = 0$
	the diagonal of the square which is not passing		(B) $2xy - 16 + x^2 = 0$
	through the origin is		(C) $2xy - 16 - x^2 = 0$
	(A) $(\cos \alpha + \sin \alpha) x + (\cos \alpha - \sin \alpha) x = 4$		(D) $2xy + 16 - x^2 = 0$
	(A) $(\cos \alpha + \sin \alpha) \times (\cos \alpha - \sin \alpha) \times (4$		
	(B) $(\cos \alpha + \sin \alpha) x + (\cos \alpha - \sin \alpha) y = 4$	8.	Line AB passes through point (2, 3) and
	(C) $(\cos \alpha - \sin \alpha) x + (\cos \alpha + \sin \alpha) y = 4$	_	intersects the positive x and v axes at $A(a, 0)$
	(D) $(\cos \alpha - \sin \alpha) x - (\cos \alpha + \sin \alpha) y = 4 \cos 2\alpha$		and B(0, b) respectively. If the area of $\triangle AOB$ is
•	A verieble restancie DODC bas its sides perelle		11, the numerical value of $4b^2 + 9a^2$, is
Ζ.	A variable rectangle PQRS has its sides parallel		(A) 220 (B) 240 (C) 248 (D) 284
	to fixed directions. Q and S lie respectively on		
	the lines $x = a$, $x = -a$ and P lies on the $x = -a$	9.	If A $(2, -2)$ and B $(-2, 1)$ are vertices of a
	axis. Then the locus of R is		(5 1)
	(A) a straight line		triangle ABC whose centroid is $\left \frac{3}{2}, \frac{1}{2}\right $, then
	(B) a circle		co-ordinates of its circumcentre is equal to
	(C) a parabola		$\begin{pmatrix} 2 & 1 \end{pmatrix}$ $\begin{pmatrix} 2 & 2 \end{pmatrix}$
	(D) pair or straight lines		(A) $\left \frac{3}{2}, \frac{1}{2} \right $ (B) $\left \frac{3}{2}, \frac{3}{2} \right $
2	A rectangular billiard table has vortices at P(0		
э.	(0, -1) = 0 $(10, -7) = 0$ $(10, -7) = 0$ $(10, -7) = 0$ $(10, -7) = 0$ $(10, -7) = 0$		$(C)\left(\frac{3}{2},\frac{5}{2}\right)$ $(D)\left(\frac{5}{2},\frac{5}{2}\right)$
	ball starts at $M(3, 4)$ and moves in a straight		$(\mathbf{c})(2,2)$ $(\mathbf{c})(2,2)$
	line to the top of the table bounces to the right		
	side of the table, then comes to rest at $N(7, 1)$	10.	Suppose the line L_1 has equation $10x - 12y =$
	The v-coordinate of the point where it hits the		17 The line L intersect L at $\left(\frac{1}{2}, \frac{11}{2}\right)$
	right side, is		$= 17. \text{ file line } L_2 \text{ filesect } L_1 \text{ at } \begin{pmatrix} 2, 6 \end{pmatrix}$
	(A) 3.7 (B) 3.8 (C) 3.9 (D) 4		and is perpendicular to L_1 . The abscissa of the
			point on L, whose ordinate is $\frac{1}{2}$ is equal to
4.	If it is possible to draw a line which belongs to		point on L_2 whose ordinate is $\frac{30}{30}$, is equal to
	the following given family of lines		(A) 1 (B) $\frac{179}{100}$ (C) 2 (D) $\frac{359}{100}$
	$(y - 2x + 1) + \lambda_1 (2y - x - 1) = 0,$		(1) (1) (2) (2) (2) (2) (2) (3) (2) (3)
	$(3y - x - 6) + \lambda_2 (y - 3x + 6) = 0,$		
	$(\alpha x + y - 2) + \lambda_3 (6x + \alpha y - \alpha) = 0,$	11.	The base BC of a triangle ABC is bisected at
	then the possible values of α can be		the point (p, q) and the equation to the side AB
	(A) 4 (B) + 3 (C) 1 (D) 0		and AC are $px + qy = 1$ and $qx + py = 1$. The
			equation of the median through A is: (A) $(p - 2q)x + (q - 2p)x + 1 = 0$
5.	TS is the perpendicular bisector of AB with		(A) $(p - 2q)x + (q - 2p)y + 1 = 0$ (B) $(p + q)(x + y) = 2 = 0$
	coordinate of A (0, 4) and B(p, 6) and the point S		(b) $(p + q)(x + y) = 2 = 0$ (c) $(2nq - 1)(nx + qy - 1) = (n^2 + q^2 - 1)(qx + q^2)$
	lies on the x-axis. If x-coordinate of S is an integer		(0)(2pq - 1)(px + qy - 1) = (p + q - 1)(qx + 1)
	then the number of integral values of 'p' is		(D) none
	(A) 0 (B) 1 (C) 2 (D) 4		
		12.	Equation of a straight line which passes through
6.	Given a triangle whose vertices are at (0, 0), (4,		the point of intersection of the lines
	4) and (10, 0). A square is drawn in it such that		3x - 4y + 6 = 0 and $x + y + 2 = 0$ and has equal
	its base is on the x-axis and its two corners are		intercepts on the coordinates axes, is
	on the 2 sides of the triangle. The area of the		(A) $x - y + 2 = 0$
	square is equal to		(B) $2x + 2y + 3 = 0$
	400 (5) 400 (5) 625 (5) 625		(C) $x + y + 2 = 0$
	(A) ${49}$ (B) ${25}$ (C) ${16}$ (D) ${49}$		(D) no such line can be found out

13.	The ends of the base of an isosceles triangle are at (2, 0) and (0, 1) and the equation of one side is x = 2 then the orthocentre of the triangle is (A) $\left(\frac{3}{4}, \frac{3}{2}\right)$ (B) $\left(\frac{5}{4}, 1\right)$	17.	A piece of cheese is located at (12, 10) in a coordinate plane. A mouse is at $(4, -2)$ and is running up the line $y = -5x + 18$. At the point (a, b), the mouse starts getting farther from the cheese rather than closer to it. The value of (a + b) is (A) 6 (B) 10 (C) 18 (D) 14
	(C) $\left(\frac{3}{4}, 1\right)$ (D) $\left(\frac{4}{3}, \frac{7}{12}\right)$	18.	If $a > 0$ then maximum area of the triangle formed by straight line $x + a (a^2 + 1)y - a = 0$ with co-ordinate axes is equal to
14.	The lines $y = mx + b$ and $y = bx + m$ intersect at the point $(m - b, 9)$, where $m \neq b$. The sum of the x-intercepts of the lines is		(A) 2 (B) $\frac{1}{2}$ (C) 4 (D) $\frac{1}{4}$
15.	(A) 9 (B) $-\frac{41}{20}$ (C) $\frac{41}{20}$ (D) can not be computed as data is insufficient Let a, b, c \in R and satisfying $(a + c)^2 + 4b^2$	19.	A point (x, y) in the first quadrant lies on a line with intercepts $(a, 0)$ and $(0, b)$, where $a, b >$ 0. Rectangle M has vertices $(0, 0)$, $(x, 0)$, (x, y) and $(0, y)$ while rectangle N has vertices (x, y) , (x, b) , (a, b) and (a, y) . The ratio of the area
	-4ab - 4bc = 0 then the variable line ax + by + c = 0 passes through a fixed point whose co-ordinates are (A) (1, -2) (B) (-1, 2) (C) (1, 2) (D) (-1, -2)		of M to that of N is (A) 1 (B) 2 (C) $\frac{1}{2}$ (D) dependent on the value of a, b, x and y.
16.	The equation of the base of an equilateral triangle ABC is $x + y = 2$ and the vertex is $(2, -1)$. The area of the triangle ABC is : (A) $\frac{\sqrt{2}}{6}$ (B) $\frac{\sqrt{3}}{6}$ (C) $\frac{\sqrt{3}}{8}$ (D) none	20.	Let C denotes the rectangular hyperbola $xy = 1$ and C ₁ is the reflection of C in the line $y = 2x$. If the equation of the curve C ₁ can be written in the form $12x^2 + bxy + cy^2 + d = 0$, then the value of (b + c + d) is equal to (A) 6 (B) 20 (C) 30 (D) 44
	(SECT	ION-B)	
21. 22.	Consider a square ABCD of side 12 and let M, N be the midpoints of AB, CD respectively. If a point P is taken on MN such that AP = r, PC = s and the area of triangle whose sides are r, s and 12 is Δ , then find the value of $\sqrt{\Delta}$. Two parallel lines l_1 and l_2 having non-zero slope,	24.	The slopes of sides BC, CA, AB of triangle ABC whose orthocentre is origin are $-1, -2, -3$ respectively. If locus of centroid of triangle ABC is $y = \left(\frac{m}{n}\right) x$, where m, n are relatively prime then find $(n - m)$.
	are passing through the points (0, 1) and (-1, 0) respectively. Two other lines l_3 and l_4 are drawn through (0, 0) and (1, 0), which are perpendicular to l_1 and l_2 respectively. The two sets of lines intersect in four points which are vertices of a square. If the area of this square	25.	A(3, 1) and C(6, 2) are two points, B and D lie on the lines $x - 3y - 1 = 0$ and $x - 3y + 4 = 0$ respectively such that a convex quadrilateral ABCD is formed. If area of quadrilateral ABCD is $\frac{p}{q}$, p, q \in N then find the least value of (p-q).
	can be expressed in the form $\frac{1}{q}$ where p, q \in		
23.	N, then find the least value of $(p + q)$. Straight line L ₁ is parallel to the bisector of first and third quadrant, forms a triangle of area	26.	If $5a + 5b + 20c = t$, then the value of t for which the line $ax + by + c - 1 = 0$ always passes through a fixed point is -
	2 square units with coordinate axes in second quadrant. Line L_2 passes through M(1, 1) and has positive x and y intercepts. L_2 makes a triangle of minimum area with coordinates axes. Find the area of triangle formed by L_1 , L_2 and x-axis.	27.	If locus of a point P(3 + r cos α , 4 + r sin α) where $\alpha = \pi - \tan^{-1} 2$ and r is a parameter, in the line mirror 4x + y = 16 is the curve C which meets the line y = 21x at (x ₀ , y ₀) then find the value of x ₀ .
			PG #2

28.	Consider a $\triangle ABC$ formed by lines $L_1 : x + y = 30$; $L_2 : y - x = 12$ and $L_3 : x - 3y = 30$. If the points (a, a ²) lies in or on the triangle then find the sum of all possible integral values of a.	30.	Let $(\alpha_1, \beta_1), (\alpha_2, \beta_2), (\alpha_3, \beta_3)$ be vertices of a $\triangle ABC$ with $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3$ are prime values of k in increasing order for which one root of equation $(k - 5) x^2 - 2kx + k - 4 = 0$ is smaller than 1 and other exceed 2. If P (p, q)
29.	points (a, a') lies in or on the thangle then find the sum of all possible integral values of a. Let A_r ; $r = 1, 2, 3, \dots$ be points on the number line such that OA_1, OA_2, OA_3, \dots are in G.P. where O is the origin. The common ratio of the G.P. is $\frac{1}{2}$ and $OA_1 = 4$. If M_r is the middle point of line segment $A_{r+1}A_r$, then find the value of $\sum_{r=1}^{\infty} OM_r$.		values of k in increasing order for which one root of equation $(k - 5) x^2 - 2kx + k - 4 = 0$ is smaller than 1 and other exceed 2. If P (p, q) is a point inside the triangle such that area of $\Delta PAC = area of \Delta PAB = area of \Delta PBC$, then find the value of $\left(\frac{p+q}{10}\right)$.

JEE CHAPTER-WISE TESTS

