JEE MAIN ANSWER KEY & SOLUTIONS

SUBJECT:-CHEMISTRY

CLASS:-11th PAPER CODE:-CWT-8

CHAPTER:-REDOX REACTION

ANSWER KEY													
1.	(B)	2.	(C)	3.	(A)	4.	(D)	5.	(D)	6.	(C)	7.	(A)
8.	(A)	9.	(D)	10.	(C)	11.	(D)	12.	(A)	13.	(A)	14.	(A)
15.	(B)	16.	(D)	17.	(B)	18.	(C)	19.	(B)	20.	(C)	21.	6
22.	24	23.	630	24.	27	25.	1	26.	0	27.	1	28.	8
29	4	30	3										

SOLUTIONS

1. (B)

Sol. O.N. of N in HNO_2 is + 3 Max. O.N. of N is + 5 Min. O.N. of N is - 3

Thus O.N. of N in HNO_2 can show an increase or decrease as the case may be. That is why HNO_2 acts as oxidant and reductant both. O.N. of N in HNO_3 is + 5, Hence it can act only as an oxidant.

2. (C)

Sol. In the reaction $P_2O_5 \rightarrow H_4P_2O_7$ The O.N. of P in P_2O_5 is 2x + 5 (-2) = 0 or x = +5The O.N. of P in $H_4P_2O_7$ is 4 (+1) + 2 (x) +7 (-2) = 0 2x = 10 or x = +5Since there is no change in O.N. of P. he

Since there is no change in O.N. of P, hence the above reaction is neither oxidation nor reduction.

3. (A)

Sol. In the above reaction $C_2O_4^{-2}$ acts as a reductant because it is oxidised to CO_2 as : $C_2O_4^{-2} \rightarrow 2CO_2 + 2e^- \text{ (oxidation)}$ $C_2O_4^{-2} \text{ reduces } MnO_4^- \text{ to } Mn^{+2} \text{ ion in solution.}$

4. (D)

Sol. The O.N. of S are shown below along with the compounds

 S_8 . $S_2O_8^{-2}$. $S_2O_3^{-2}$, $S_4O_6^{-2}$, 0 +6 +2 +2.5

Hence the order of increasing O.N. of S is

 $S_8 < S_2O_3^{-2} < S_4O_6^{-2} < S_2O_8^{-2}$

5. (D)

Sol. The balanced redox reaction given above can be written as:

10FeC₂O₄ + 6KMnO₄ + 24H₂SO₄ → 5Fe₂ (SO₄)3 +

10FeC₂O₄ + 6KMnO₄ + 24H₂SO₄ \rightarrow 5Fe₂ (SO₄)3 + 20CO₂ + 6 MnSO₄ + 3 K₂SO₄ + 24H₂O so the value of x = 6 and y = 6

6. (C

Sol. The correctly balanced half reaction is – $Cr_2O_7^{-2} + 14H^+ \rightarrow 2Cr^{+3} + 7H_2O - 6e^-$ It is a reduction half reaction in balancing the equation by ion – electron method.

7. (A

Sol. N_{Δ} no of electron will be removed by

 $\frac{6.023\times10^{23}}{2.25\times10^{23}}\times16g \text{ of metal M}$

= 42.83 g of metal M

.. equivalent weight of metal is 42.83

8. (A)

Sol. $H_2 + Br_2 \rightarrow 2HBr$

 $H_{2} = 0$

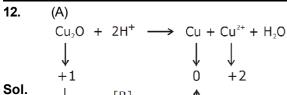
 $B_{r_2}^2 = 0$, [Homogeneous compound = 0]

HBr: x - 1 = 0 = x = +1HBr: 1 + x = 0, x = -10 0 (R) +1 -7

 $H_2 + Br_2 \rightarrow 2H B r$

9. (D)

Sol. Oxidation is addition of oxygen and removal of hydrogen. It also means addition of electronegative element and removal of some


electropositve element.

Mn is reduced & SO₃²⁻ is oxidised.

11. (D)

Sol. All the above, because all the compound a r e neutral and carbonyl is also a neutral ligand so

oxidation of metal should be zero.

Oxidation & Reduction at one compound disproportionation is a specific type of redox reaction in which an element from a reaction

under goes both oxidation & reduction to form

13. (A)

Sol.
$$K_2Cr_2O_7 + XH_2SO_4 + YSO_2$$

 $\rightarrow K_2SO_4 + Cr_2(SO_7)_3 + ZH_2O$
 $X = 1, Y = 3, Z = 1$

two different produces.

14. (A)

Sol.
$$\text{Cu} + 4 \text{ HNO}_3 \rightarrow \text{Cu} (\text{NO}_3)_2 + 2\text{H}_2\text{O} + 2\text{NO}_2$$

15. (B)

Sol.
$$5BiO_3^- + 14H^+ 2Mn^{2+}$$
 $\longrightarrow 5Bi^{3+} + 7H_2O + 2MnO_4^-$

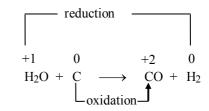
This is the balanced equation.

16. (D) Sol. $NH_3: 17$ $N_2 = 14$ $\frac{M}{17-14} = \frac{M}{3} = \frac{17}{3}$

17. (B)
Sol.
$$H_2O_2 + MnO_4^- \longrightarrow Mn^{+2} + O_2$$

 $\left(\frac{1.2}{34} \times 2\right) meq \quad (1.5 \times 5) meq$
(limiting reagent)

m moles of
$$O_2 = \frac{1.2 \times 2}{34} \times \frac{1}{2} = \frac{1.2}{34}$$
 m mol


mass of
$$O_2 = \frac{1.2}{34} \times 32 \text{ mg}$$

= 1.12 mg

18. (C)

Sol.
$$Cu + H_2SO_4 \rightarrow CuO + H_2O + SO_2 (H_2SO_4 \text{ act as oxidant})$$

 $CuO + H_2SO_4 \rightarrow CuSO_4 + H_2O (H_2SO_4 \text{ act as acid})$

19. (B

Sol.

 \therefore H₂O is the oxidising agent. C is the reducing agent.

20. (C)

Sol. Cl atom is oxidized (Cl $^{1+} \rightarrow$ Cl $^{5+} + 4e$) as well as Cl atom is reduced (Cl $^{1+} + 2e \rightarrow$ Cl $^{-}$). Such reactions are called auto redox or disproportionation reactions.

21. 6

Sol. In H₂S₂O₈, two O atoms form peroxide linkage i.e.

O O

$$\uparrow \qquad \uparrow$$

$$H - O - S - O - O - S - O - H$$

$$\downarrow \qquad \downarrow$$
O O
$$2 \times 1 + 2a + 6(-2) + 2(-1) = 0$$

$$\therefore a = + 6$$
Thus the O.N. of S in H₂S₂O₈ is +6

22. 24

Sol.
$$2Al^{\circ} \rightarrow Al_{2}^{+3} + 6e^{-}$$
 (A)
 $8e^{-} + Fe_{2}^{+8/3} \rightarrow 3Fe^{\circ}$ (B)

Multiplying Eq. (A) by 4 and Eq. (B) by 3, then on addition

$$8Al^{\circ} \rightarrow 4Al_{2}^{+3} + 24e^{-}$$
 $24e^{-} + 3Fe^{+8/3} \rightarrow 9Fe^{\circ}$
 $8Al^{\circ} + 3Fe_{3}^{+8/3} \rightarrow 9Fe^{\circ} + 4Al_{2}^{+3}$
or $8Al + 3Fe_{3}O_{4} \rightarrow 4Al_{2}O_{3} + 9Fe$

Therefore, it is clear that total no. of electrons transferred during change = 24

23. 630

Sol. The equivalent weight of $P_4 = \frac{31 \times 4}{5 \times 4} = \frac{31}{5}$ $\therefore 62g P_4 = \frac{62 \times 5}{31}$ equivalent of $P_4 = 10$ equivalent of P_4

The equivalent weight of HNO₃ = $\frac{\text{Mol.wt}}{1} = \frac{63}{1}$ \therefore the wt. of HNO3 required = 10 × 63 = 630 g **24**. 27

Sol. Let, the molecular formula of the chloride is MCl_x and atomic weight of the element is a

$$\therefore 9x + x \times 35.5 = \times 2(E = a / x)$$

$$x = \frac{58.5 \times 2}{44.5} = 2.63$$

The nearest whole no. of 2.63 = 3

 $\boldsymbol{\cdot\cdot}$ approximate atomic weight of the element

$$=9\times3=27$$

25. 1

$$Ba(H_2PO_2)2$$

Sol.
$$^{+2}$$
 $^{-1}$ Ba $^{+2}$ $^{-1}$

$$2 + x - 4 = -1$$

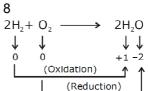
$$x = +1$$

26. 0

$$x + 0 \times 4 = 0$$

$$x = 0$$

27. 1


$$x + 2(+1) + (-2) + (+1) = 0$$

$$x + 2 - 2 + 1 = 0$$

$$x = -1$$

28.

Sol.

O₂ is oxidising agent

Equivalent weight

$$= \frac{\text{Molecular weight}}{\text{n - factor}}$$

Equivalent weight of $O_2 = \frac{32}{4} = 8$

Sol. $HNO_2 + H_3O^+e^- \rightarrow NO + 2H_2O$; $E^0 = 0.99 \text{ V}$ $NO_3^- + 3H_3O^+ + 2e^- \rightarrow HNO_2 + 4H_2O$; $E^0 = 0.94 \text{ V}$ By doubling the first equation and adding the reverse the second, one obtains

$$3HNO_2 \rightarrow 2NO + NO_3^- + H_3O^+$$
; E° = 0.05 V

$$\log K = \frac{2.303 \, RT}{n FE^{\circ}} = 0.6 : K = 4$$

30. 3

Sol.
$$[Co(CN)_6]^{3-}$$

$$x - 1 \times 6 = -3$$
$$x = +3$$