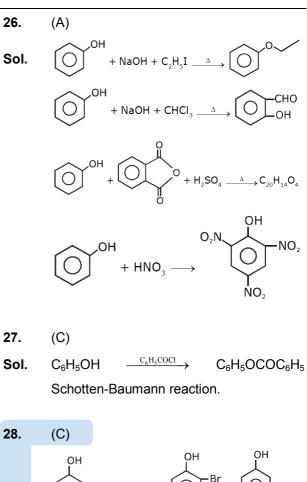
NEET ANSWER KEY & SOLUTIONS

SUBJECT :- CHEMISTRY

CLASS :- 12th

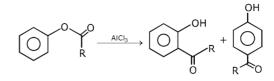
50.

(C)

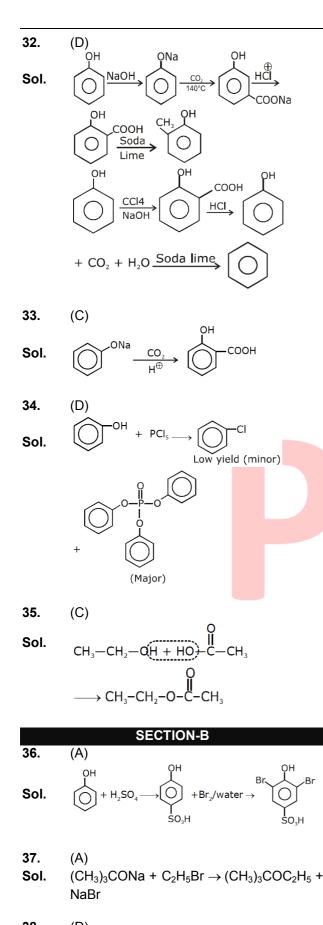

PAPER CODE :- CWT-8

CHAPTER :- ALCOHOL, PHENOL & ETHER													
						ANSW	ER KEY	,					
1.	(A)	2.	(C)	3.	(C)	4.	(C)	5.	(B)	6.	(C)	7.	(C)
8.	(B)	9.	(D)	10.	(A)	11.	(A)	12.	(B)	13.	(A)	14.	(B)
15.	(B)	16.	(A)	17.	(D)	18.	(A)	19.	(C)	20.	(C)	21.	(C)
22.	(C)	23.	(B)	24.	(D)	25.	(C)	26.	(A)	27.	(C)	28.	(C)
29.	(D)	30.	(B)	31.	(B)	32.	(D)	33.	(C)	34.	(D)	35.	(C)
36.	(A)	37.	(A)	38.	(D)	39.	(B)	40.	(A)	41.	(B)	42.	(B)
43.	(C)	44.	(A)	45.	(A)	46.	(B)	47.	(C)	48.	(B)	49.	(C)

	SECTION-A	9.	(D)
1. Sol.	(A) $\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3}-C=CH_{2} + BH_{3} \xrightarrow{H_{2}O_{2}} CH_{3}-CH-CH_{2}OH \end{array}$	Sol.	$\begin{array}{c} CH_{3}CHOHCH_{3} \xrightarrow{K_{2}Cr_{2}O_{7}} CH_{3} \xrightarrow{CH_{3}} CH_{3} \\ \xrightarrow{I_{2}/Na_{2}CO_{3}} CH_{3}I \end{array}$
2.	$CH_{3}-\dot{C}=CH_{2} + BH_{3} \xrightarrow{H_{2}O_{2}} CH_{3}-\dot{C}H-CH_{2}OH$ (C) $CH_{3}-COOH \xrightarrow{LiAIH_{4}} CH_{3}CH_{2}-OH$	10. Sol.	(A) When treated with HBr or HCl alcohol typically undergo a nucleophilic substitution reaction to generate an alkyl halide and water. Alcohol relative reactivity
3.	(C) $CH_3 - CH_2 - Mg - Br + CH_3 - CH_2 - CH_2 - CH_3$		order $3^{\circ} > 2^{\circ} > 1^{\circ} >$ methyl . Methanol and primary alcohol will proceed via an SN_2 mechanism since these have highly unfavourable carbocation.
Sol.	(C) $CH_3 - CH_2 - Mg - Br + CH_3 - CH_2 - CH_2 - CH_2 - CH_3$ Hydrolysis $CH_2 - CH_3$ $CH_3 - CH_2 - CH_2 - CH_3$ $CH_3 - CH_2 - CH_2 - CH_3$ $H_3 - CH_2 - CH_2 - CH_3$ $CH_3 - CH_2 - CH_3 - CH$	11. Sol.	(A) NH_2 $CH_3 - CH - CH_3 + HNO_2 \xrightarrow{0-5^{\circ}C} CH_3 - CH - CH_3$ H_0 OH
	(C) $CH_2=CH_2 + HBr \longrightarrow CH_3-CH_2-Br$	12. Sol.	(B) CH_3 — CH_3 — CH_2 —OH undergo oxidation.
Sol. 5. Sol.	$\xrightarrow{\text{KOH}(aq.)} \text{CH}_{3} - \text{CH}_{2} - \text{OH} \xrightarrow{\text{Na}_{2}\text{CO}_{3}} \text{CHI}_{3}$ (B) $C_{2}\text{H}_{5} - \text{NH}_{2} + \text{HNO}_{2} \longrightarrow C_{2}\text{H}_{5}\text{OH}$	13. Sol.	(A) With increase in branching, molecule becomes spherical and have less hydrogen bonding. Hence 3° will have least boiling point.
Sol.	(C) Lederer-Manasse reaction gives ortho and para product only.	14. Sol.	(B) (1) $CH_{3}MgI + CH_{3}CHO \xrightarrow{H_{3} \oplus } CH_{3} - CH_{3} - CH_{3}$ 2°Alc.
7.	(C) он		(2) $(CH_3)_2C=CH_2 \xrightarrow{\bigoplus \\ H-HSO_4} (CH_3)_2-C-CH_3$ I OH
Sol.	$CH_{3} - CH - CH_{3} + Cr (VI) \longrightarrow$ $CH_{3} - C - CH_{3} + Cr (III)$		(3) $CH_3COOC_2H_5 \xrightarrow{Na^{\oplus}} CH_3 - OH + CH_3 - COOCH_3$ C_6H_3O 1°Alc.
8.	(B)		OH I CH ₃ —CH—C ₂ H ₅ \longrightarrow Enantiomeric pair due to
Sol.	$ \begin{array}{c} OH \\ I \\ CH_{3}-CH_{2}-CH-CH_{3} \xrightarrow{K_{2}Cr_{2}O_{7}[O]} \\ O \\ II \\ CH_{3}-CH_{2}-C-CH_{3} \end{array} $		(4) $\begin{array}{c} CH_3 & CH_3 \\ I & -C - OH \end{array} \begin{array}{c} CH_3 \\ I & -C - OH \end{array} \begin{array}{c} CH_3 \\ I \\ H - C - OH \end{array} \begin{array}{c} CH_3 \\ I \\ H - C - H \\ R \end{array}$


1

15. Sol.	(B) CH ₃ COOH + C ₂ H ₅ —OH $\xrightarrow{H^{\oplus}}$ CH ₃ —				
301.	$CO_{2}H_{5} + H_{2}O$				
	(A) Pyridine absorbs acid formed in process.				
	(D) Removal of H is oxidation.				
18. Sol.	(A) Oxidation is mainly due to α – Hydrogen.				
	(C) Diethyl carbinol is tertiary alcohol.				
20. Sol.	(C) CH ₃ —OH & C ₂ H ₅ OH can be distinguished by heating with I_2 and base.				
21.	(C) CH,				
Sol.	(C) CH_3 H_3 CH_3 -CH-CH=CH $_2$ H^{\oplus}/OH^{\ominus} $(CH_3)_2$ -CH-CH $_2$ -CH $_3$ H_3 OH				
22. Sol.	(C) In the esterification reaction, OH bond of alcohol cleaves. The presence of alkyl group with +I effect makes the cleavage of the bond difficult and the alcohol becomes				
	less reactive toward esterification. Greater the number of alkyl groups present lesser will be the reactivity of alcohol.				
23.	the number of alkyl groups present lesser will be the reactivity of alcohol. (B)				
23. Sol.	the number of alkyl groups present lesser will be the reactivity of alcohol. (B)				
	the number of alkyl groups present lesser will be the reactivity of alcohol. (B)				
	the number of alkyl groups present lesser will be the reactivity of alcohol. (B) $C_6H_5OH \xrightarrow{NH_3/SnCl_2} O$ O O O O O O O O O				
Sol.	the number of alkyl groups present lesser will be the reactivity of alcohol. (B) $C_6H_5OH \xrightarrow{NH_3/SnCl_2} O$ O O O O O O O O O				
Sol. 24.	the number of alkyl groups present lesser will be the reactivity of alcohol. (B) $C_6H_5OH \xrightarrow{NH_3/SnCl_2} O$ O O O O O O O O O				


Sol.
$$OH$$

 $+ Br_2 - CS_2 \rightarrow OH$
 $(Ortho)$
Sol. OH
 OH
 $+ Conc. HNO_2$

Sol. Fries rearrangment

Br (Para)

31. (B) $H = \begin{array}{c} CI \\ CI \\ CI \end{array} = CI \xrightarrow{OH \text{ or } OR \\ CI \end{array} \xrightarrow{O} CI \\ CI \end{array} \xrightarrow{CI \\ CI \end{array} = CI \xrightarrow{OH \text{ or } OR \\ CI \\ CI \end{array} \xrightarrow{CI \\ Dichlorocarbene \end{array} \xrightarrow{OI} CI$

38. (D) Sol. $C_2H_5OH + H_2SO_4 (140^{\circ}C) \longrightarrow C_2H_5 \longrightarrow C_2H_5$ $C_2H_5OH + H_2SO_4 (120^{\circ}C) \longrightarrow CH_2 = CH_2$

39.	(В)
Sol.	$(C_2H_5)_2O + O - O \longrightarrow O$ Free radical
40. Sol.	(A) KI and KSCN are used.
41. Sol.	(B) Alkyl halide undergo β - elimination reaction.
	(B) Ethoxide ion act as nucleophile.
	(C) CH ₃ —CH=CH—O—CH ₂ —CH ₃ $\xrightarrow{\text{Conc. HI}}_{\text{heat}}$ CH ₃ —CH ₂ —CHO + Et CH ₃ CH ₂ I
44. Sol.	$(A) (C_2H_5)_2O + H^{\oplus} \longrightarrow C_2H_5OH$
45.	(A) 0 CH
Sol.	$CH_{3} - C - O - C - CH_{3} \xrightarrow{Na/C_{2}H_{5}OH} CH_{3} - C - O - C - CH_{3} \xrightarrow{Na/C_{2}H_{5}OH} CH_{3} - CH_{3} \xrightarrow{CH_{5}OH} CH_{5} - CH_{5} \xrightarrow{CH_{5}OH} CH_{5} CH_{$
	CH_3 CH_3
46.	(B)
40.	
Sol.	$CH_{3}-CH=CH_{2} \xrightarrow{NBS} CH_{2}-CH=CH_{2}$
	$\xrightarrow{C_2H_5ONa} CH_2 = CH CH_2OC_2H_5$

- **47.** (C)
- **Sol.** It is correct that sodium phenoxide (sodium salt of phenol) and CO_2 on heating from sodium salicylate. This is known as Kolbe's reaction. Ethanol does not respond to this reaction. Therefore, assertion is true. But the reason that phenoxide ion is more basic than ethoxide ion is not correct.

48. (B)

Sol. Zeolites are shape-selective porous solid acid catalysts, their catalytic activity originates from the presence of highly acidic Al - O(H) - Si hydroxyl in the framework.

49. (C)

Sol. Ethers being Lewis bases form etherates with Lewis acids.

50. (C)

Sol. A mixture of conc. *HCl* + anhyd. *ZnCl*₂ is called Lucas reagent.