JEE MAIN ANSWER KEY & SOLUTIONS

SUBJE CLASS CHAP	UBJECT :- MATHEMATICS LASS :- 11 th :HAPTER :- PERMUTATION & COMBINATION										PAPER CODE :- CWT-7			
ANSWER KEY														
1. 8. 15. 22. 29.	(D) (C) (A) 42 629	2. 9. 16. 23. 30.	(B) (C) (C) 770 300	3. 10. 17. 24.	(C) (B) (A) 208	4. 11. 18. 25.	(A) (A) (D) 1275	5. 12. 19. 26.	(C) (C) (C) 7000	6. 13. 20. 27.	(D) (B) (C) 710	7. 14. 21. 28. 15	(D) (C) 10 1200	
						SOLU	TIONS							
1.	(D)	a	L)				5. Sol.	(C) Each is a pc	a _i can be sitive inte	e replac eger.	ed by 2t	o _i —1, wh	iere b _i	
Sol.	Question No. 1 can be printed in 5! ways Sim., Question No.2 can be printed in 5! ways and so on \therefore Total ways (5!) ²⁰							Now $32 = \sum_{i=1}^{4} (2b_i - 1) = \left(2\sum_{i=1}^{4} b_i\right) - 4 \implies 18 = \sum_{i=1}^{4} b_i \qquad \dots (i)$						
2.	(B)		.4 H]	1=1			4		
Sol.	4 coup	oles	>4 II ∽4 W	umber o	of ways =	Total –		Now a	assign 1	to each	ı b _i , so	$14 = \sum_{i=1}^{1}$	`b _i	
	all (HW) pair together) 4 husbands can be seated in 3! ways and 4 women (any) can be seated in 4! ways Total ways when women and husbands are alternate = 4! × 3!							∴ By <u>17!</u> 14! 3!	using begins $\frac{17 \times 1}{2}$	ggar me $\frac{6 \times 15}{6}$	thod, nui = 17 × 4	nber of w 40 = 680	/ays = Ans.]	
	Now,	H ₁ V	N_1 ,	H ₂ W ₂	, H	$\left \frac{1}{3} W_3 \right $,	6	(D)						
	H_4W_4 are always together = 3! · 2!						•	(2)				41		
3. Sol.	$\therefore \text{ Required no. of ways} = 4! \cdot 3! - 3! \cdot 2! = 132$ (C) $10 < \frac{3m}{7w} \text{ 3 women can be selected in } ^7C_3 \text{ ways}$ and can be paired with 3 men in 3! ways. Remaining 4 women can be grouped into two						Sol.	Numb	per of wa	ay from	n H to I	$P = \frac{4!}{2!2}$	<u> </u>	
										₹ ↓ s				
	couples in $\frac{4!}{2! - 2!} = 3$							Number of ways from P to Q = 1 (obvious)						
	:. total = ${}^{7}C_{3} \cdot 3! \cdot 3 = 630$ Ans.]							Number of ways from Q to S = $\frac{4!}{1!3!}$ = 4						
4. Sol.	(A) n(A ∪ where	B) = n(A A = A's	A) + n(B) togethei) – n(A ∩ r and B	∩ B) s = B's to	gether	_	∴ Tota	al ways =	6 × 4 =	= 24 Ans	3.]		
	now n(A) = $\frac{5!}{3!}$ = 20 A A A A B B B C							(D) Let $X = {}^{2n+1}C_{n+1} + {}^{2n+1}C_{n+2} + {}^{2n+1}C_{n+3} + \dots + {}^{2n+1}C_{2n} + {}^{2n+1}C_{2n+4}$						
	n(B) = n(A ∩	$\frac{6!}{4!} = 3$ B) = 3! = 50	0 B $= 6 A$	BB AAA A Ans		B C		using + ^{2n + 2} adding + ^{2n + 2}	${}^{n}C_{r} = {}^{n}C_{r}$ ${}^{1}C_{2} +$ g 2X = 2n ${}^{1}C_{2} +$	C_{n-r} + 2^{n+1} + $1^{n+1}C_0$ + = $2^{2^{n+1}}$	$X = 2^{n}$	$^{n+1}C_0 + ^{2n}$ + 2n = 2^{2n} =	$^{n+1}C_1^{n+1}C_{2n}^{n+1}$	
		_, 00	- '		1				211 + 1					

1

8. (C) 13. Sol. If number of sides is n, then total number of diagonals of a convex polygon $= {}^{n}C_{2} - n = 44$ (given) \Rightarrow n² - 3n - 88 = 0 \Rightarrow n(n – 1) – 2n = 88 (n - 11)(n + 8) = 0 \Rightarrow \Rightarrow $n = 11 \implies$ undecagon Ans.] 9. (C) Sol. 'MEENANSHU'. Number of letters = 9 (EE = 2, NN = 2) \therefore Number of ways = (Total words formed) – n 14. Sol. $(A \cup B) = \frac{9!}{2! \cdot 2!} - \left| \frac{2 \cdot 8!}{2!} - 7! \right|$ $= 18 \cdot 7! - 7 \cdot 7! = (18 - 7)7! = 11 \cdot 7!$ k = 11 **Ans**.] 10. (B) Sol. In 132!, we have number of 2's = 130 number of 5's = 3215. S ∴ $\frac{2^{130} \cdot 5^{32}}{2^{104} \cdot 5^{19}}$ ⇒ Number of 5's = 13 Ans.] 11. (A) Sol. A person starting from london will have 13 options also the next person who starts at 2nd Station will have 12 options So, total no. of options $\sum 13 = 78$ & no. of 16. people = 75. : no. of different set of tickets $= {^{78}C_{75}} \text{ or } {^{78}C_{78-75}} = {^{78}C_3}.$ 12. (C) Sol. If m parallel lines in a plane are interasected by n parallel line, the no of parallelogram that are formed. $= {}^{m}C_{2} \times {}^{n}C_{2}$ No. of parallelograms = 1260. m = 8 n = ? $\therefore {}^{8}C_{2} \times {}^{n}C_{2} = 1260$ $\Rightarrow 28 \times \frac{n(n-1)}{2} = 1260 \quad \left\{ \because {}^{r}C_{r} = \frac{n!}{r! \times (n-r)!} \right\}$ Sol. \Rightarrow n² – n = 90 \Rightarrow n² - n = 90 = 0 \Rightarrow n² - 10n + 9n - 90 = 0 \Rightarrow (n – 10) (n + 9) = 0 n = 10 & - 9 ·· n ≠ – ve

∴ n = 10

(B)

(C)

One pair of 2 and 5 makes 10 (i.e. 2 × 5 = 10) which gives one zero at the end. Now 5⁶, 10¹¹, 15¹⁶, 20²¹, 25²⁶, 30³¹ contain 6, 11, 16, 21, 52, 31 fives. Therefore total number of fives $= 6 + 11 + 16 + 21 + 2 \times 26 + 31 = 137$ Also, number of 2's are greater than number of 5's. Thus, number of zero at the end 137.]

(A)

$$\sum_{r=1}^{n} {}^{2n}C_{n+r} = {}^{2n}C_{n+1} + {}^{2n}C_{n+2} + \dots + {}^{2n}C_{2n}$$
$$= \frac{1}{2}(2^{2n} - {}^{2n}C_n).$$

(C)

Sol. Treat each of V₁ V₂V_n varieties as n beggars.

> Total ways when m mangoes can be taken without any restriction = $^{m+n-1}C_m$ Now $m + n-1C_m = All of same variety + (m - 1)$

> of same variety and 1 diff. + (m-2) of same variety and 2 diff. + + all 'm' of diff. variety At least two mangoes of the same variety (say x) = Total – All m of different variety = ${}^{m+n-1}C_m - {}^{n}C_m \Rightarrow (C)$]

17. (A)

Required number of ways = (number of ways in which 16 players can be divided in 8 couples) - (number of ways when S₁ and S₂ are in the same group)

$$= \frac{16!}{2^8 \cdot 8!} - \frac{(14)!}{2^7 \cdot 7!} = \frac{16 \cdot 15 \cdot 14!}{2 \cdot 2^7 \cdot 8 \cdot 7!} - \frac{(14)!}{2^7 \cdot 7!}$$
$$= \frac{(14)!}{2^7 \cdot 7!} \left[\frac{16 \cdot 15}{16} - 1 \right] = \frac{(14) \cdot (14)!}{14 \cdot (6!) \cdot 2^6} = \frac{(14)!}{2^6 \cdot 6!} \text{ Ans.}]$$

42

Sol. Put 1 ball in each of 3 boxes. Now remaining balls (k - 3)

use beggar
$$\underbrace{0 \ 0 \dots 0}_{(k-3)} \underbrace{\emptyset \ \emptyset}_{2} \underbrace{\emptyset}_{k-1} C_{2} = 820$$

$$\frac{(k-1)(k-2)}{2} = 820 \quad \Rightarrow \qquad k = 42 \text{ Ans.}]$$

With only five buttons pressing number of combination = ${}^{10}C_5$ total in redesign = $2^{10} - ({}^{10}C_0 + {}^{10}C_{10}) = 2^{10} - 2$

additional combinations = $(2^{10} - 2) - {}^{10}C_5$ = 1022 - 252 = 770 Ans.]

1.
$$208$$
T'S = 3
A'S = 1
E'S = 1
R'S = 1
S = 1
 $4 \times \frac{4!}{3!} = 16$
 ${}^{4}C_{2} \times \frac{4!}{2!} = 72$
 ${}^{5}C_{4} \times 4! = 120$
 $\overline{208}$

1275

Let he gives x, y and z shares to his sons. now. x + y + z = 101number of non negative integral solution of the equation (1) = ${}^{103}C_2$ (Total ways)

When x assumes the value 51 or more than such cases are to be rejected.

x + y + z = 50now, (where x = 51 or more)

number of solution of (2) = ${}^{52}C_2$ 3.⁵²C₂ Total number of such cases

(when y takes 51 when z takes 51 values.) \therefore required number of ways = ${}^{103}C_2 - 3$. ${}^{52}C_2 = 1275$ **Ans.**]

....(1)

....(2)

26. 7000 29. Sol. for distribution of 3 blue balls Sol. number of ways = ${}^{6}C_{3}$ [O O O $\varnothing \oslash \oslash$] (beggar) ||ly 4 white and 2 red balls can be distributed in ⁷C₃ and ⁵C₃ ways. Hence using fundamental principle of counting Total ways = ${}^{5}C_{3} \cdot {}^{6}C_{3} \cdot {}^{7}C_{3}$ = 10 × 20 × 35 = 7000 Ans.] 27. 710 Sol. No. of words when it contains (a) 3 alike, 1 different $\longrightarrow 1 \times {}^{8}C_{1} \times \frac{4!}{3!} =$ 32 (b) 2 alike, 2 alike $\longrightarrow 1 \times \frac{4!}{2! 2!} = 6$ (c) 2 alike, 1 different, 1 different \rightarrow 2 × ${}^{8}C_{2}$ 30. Sol. $\times \frac{4!}{2!} = 672$ Total number of required words = 710. Ans.] 28. 151200

Sol. Total number of ways = ${}^{9}C_{7} \cdot 7!$ now there are 6 pairs of consecutive places e.g. ab, bc,..... when we can place 56 or 65. This can be done in $6 \cdot 2 = 12$ ways and remaining places can be filled in ${}^{7}C_{5} \cdot 5!$. Here number of ways in which all the seven places can be filled with consecutive 65 or 56 $= 12 \cdot {}^{7}C_{5} \cdot 5!$ Hence the required number of ways $= {}^{9}C_{7} \cdot 7! - ({}^{7}C_{5} \cdot 5! \cdot 12)$

 $= 36 \cdot 7! - 2 \cdot 6! \cdot 2! = 6 \cdot 6! [42 - 7] = 6 \cdot 35 \cdot 6! = 151200$

629 AAA, M, N, R, Y Number of words starting with A = $\frac{6!}{2!}$ = 360 Number of words starting with M = $\frac{31}{31}$ = 120 Number of words starting with N = $\frac{6!}{3!}$ = 120 Number of words having 1st 3 letter as R A A = 4 ! = 24Number of words having first 4 letter as RAMA A or RAMA |N|=2!+ 2! = 4All above maintained words will be above "Ramayan" in dictionary, hence number of such words = 360 + 120 + 120 + 24 + 4 = 628 Hence rank of "RAMAYAN" = 629 Ans. 300 Given : Girls - 5 & boys - 7 team members : girls -2 & boys - 3 Total no. of ways = ${}^{5}C_{2} \cdot {}^{7}C_{3}$ Consider when A & B are always included = ${}^{5}C_{1}$ ${}^{5}C_{2}$ as only 1 boy & 2 girls are to we selected. required no. of ways = total No.of ways - when A & B are always included $= {}^{5}C_{2} \cdot {}^{7}C_{3} - {}^{5}C_{1} \cdot {}^{5}C_{2}$ $= {}^{5}C_{2} \left[{}^{7}C_{3} - {}^{5}C_{1} \right]$ $==\frac{5!}{2!3!}\left[\frac{7!}{3!4!}-\frac{5!}{4!}\right]$ $= 10 \left[\frac{7 \times 6 \times 5}{3 \times 2} - 5 \right]$

 $10[35-5] = 30 \times 10 = 300.$

4