SUR	IECT :- MATHEMATICS	JEE MAIN : CHA	AFTER WISE					
CLASS :- 11 th CHAPTER :- PERMUTATION & COMBINATION				DATE NAME				
				SECTION				
			(SECTION-A)					
1.	A multiple choice exam has 20 questions, and each question has 5 possible answers. The same 5 answers for each question will appear on each examination paper, but they can appear in any order. The questions will appear in the			number o more thar (A) 2 ^{n - 1}	f subsets of n elements (B) 2 ⁿ	(C) 2 ^{n + 1}	ich contain: (D) 4 ⁿ	
	same order on every	examination paper. Nu nation papers that ca (B) P(20, 5)	mber 8.	A convex polygon is (A) nonage (C) undeca	on	as 44 diag (B) decag (D) Dode	jon	
2.	(C) $\frac{20!}{5!}$	(D) (5!) ²⁰ ays in which 4 married couples can		Number of 9 lettered words that can be formed using all the letters of the word 'MEENANSHU if alike letters are never adjacent, is k(7!). Ther 'k' lies in the interval				
	be seated round a	table such that mer and not all women adj	and	(A) [1, 5] (C) (10, 19 Number o	-	(B) (5, 10 (D) (15, 2 e end of the	20]	
	(A) 144 (B) 132	(C) 120 (D) 3	6	$\frac{132!}{2^{104}5^{19}}$ is				
3.	There are 3 men and 7 women taking a dance class. Number of different ways in which each			(Ã) 6	(B) 13	(C) 26	(D) 47	
	man be paired with a woman partner, and the four remaining women be paired into two pairs each of two, is (A) 105 (B) 315 (C) 630 (D) 450		pairs	A train is going from London to Cambridge stops at 12 intermediate stations. 75 persons enter the train during the journey with 75 differen tickets of the same class. Number of differen sets of tickets they may be holding is				
4.	The number of permutation of the letters AAAABBBC in which the A's appear together			Ũ	(B) ⁹¹ C ₇₅			
	in a block of four letters or the B's appear in a block of 3 letters, is			In a plane a set of 8 parallel lines intersects a set of n parallel lines, that goes in another direction, forming a total of 1260 parallelograms				
5.	(A) 44 (B) 50	(C) 60 (D) n ered quadruples (a ₁ , a		. The valu (A) 6	-	(C) 10	(D) 12	
		dd integers that sa		3 persons	s such that ther of obje	to be distrib no two pers cts. Number	sons get the	
6.	-	e plan of a town whe e square. In the mide		(A) 60	(B) 90	(C) 120	(D) 150	
	the town is a park with a diagonal road through			Number of zero's at the end of $\prod_{n=1}^{\infty} (n)^{n+1}$ is				
	it. Madhuri walks every day from her house at H to her school at S, always taking one of the		of the	(A) 111	(B) 147	(C) 137	ⁿ⁼⁵ (D) none	
	shortest routes. The number of different shortest routes that she can choose is			Two players $P_1 \& P_2$ play a series of 2n game each game can result in either a win or a los for P_1 . The total no. of ways in which P_1 ca win the series of these games is equal to				
				2		(B) $\frac{1}{2}(2^2)$,	
	(A) 6 (B) 12	(C) 18 (D) 2	4	(C) $\frac{1}{2}(2^{n} \cdot$	$-2^{n}C_{n}$	(D) $\frac{1}{2}(2^{n}$	$-2 \times {}^{2n}C_n$	

https://prernaeducation.co.in

16.	A man wants to buy 'm' mangoes in 'n' different varieties, mangoes of the same variety being identical and they are available in abundance.	18.	There are 3 straight lines, 4 circles and 5 parabolas in xy plane. Maximum number of their intersection point, is			
	Number of different ways he can plan his purchases, if he has to buy atleast two mangoes		(A) 129 (B) 149 (C) 169 (D) 189			
	of the same variety is	19.	Two variants of a test paper are distributed among 12 students. Number of ways of seating of the students in two rows so that the students			
	(A) $^{m-2} {}^{n}C_{n-1}$ (B) $^{m+n-3}C_{m-1}$					
	(C) ^{m+n-1} C _m - ⁿ C _m (D) $\frac{m^{m+n-1}P_{n-1} - nP_{m}}{m!}$		sitting side by side do not have identical papers			
	(C) ^{m+n-1} C _m - ⁿ C _m (D) $\frac{m m P_{n-1} - m P_m}{m!}$		and those sitting in the same column have the same paper is :			
17.	Sixteen players $S_1, S_2, S_3, \dots, S_{16}$ play in		(A) $\frac{12!}{6!6!}$ (B) $\frac{(12)!}{2^5 6!}$			
	a tournament. Number of ways in which they		(C) $(6!)^2 \cdot 2$ (D) $(6!)^2 \cdot 2^2$			
	can be grouped into eight pairs so that S_1 and S_2 are in different groups, is equal to					
	${\rm S_2}$ are in different groups, is equal to	20.	Two different packs each containing 52 playing cards are shuffled together. The number of ways in which a man can be dealt 26 cards so that			
	(A) $\frac{(14)!}{2^6 \cdot 6!}$ (B) $\frac{(15)!}{2^7 \cdot 7!}$					
			he does not get two cards of the same suit and			
	(14)! (14)!		same denomination is :			
	(C) $\frac{(14)!}{2^7 \cdot 6!}$ (D) $\frac{(14)!}{2^6 \cdot 7!}$		(A) $2^{26} - 1$ (B) $2^{52} - 1$ (C) ${}^{52}C_{26} \cdot 2^{26}$ (D) none			
		ION-B)				
21.	Number of permutations of all the letters in "ANABLAVA" that does not end with A can be	26.	Find the number of ways in which 3 blue, 4 white and 2 red balls can be distributed into 4 distinct boxes if each box can have any number of balls.			
	expressed in the form of $\frac{m!}{n!}$, find (m + n)		Assume that balls of the same colour to be alike.			
22.	Find the value of k if there are 820 ways in		Find the number of four letter words which can be made using the letters of the word			
	which k identical balls are distributed in 3	27.				
	distinct boxes when each box can hold any		"HIPPOPOTAMUS". If atleast 1 letter is			
	number of balls, and no box remains empty.		repeated.			
23.	One commercially available ten button lock may	20				
	be opened by by pressing in any order the correct five buttons. The sample shown below	28.	How many 7 digit number are there such that the digits are distinct integer taken from the set			
	has $\{1, 2, 3, 6, 9\}$ as its combination. Suppose		$S = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and such that the			
	that these locks are redesigned so that sets of		integer 5 and 6 do not appear consecutively in			
	as many as nine buttons or as tens as one button could serve as combination. How many		either order.			
	additional combination would this allow?	29.	If the letters of the word 'RAMAYAN' are written			
			down in all possible manner as they are in the			
24.	How many ways are there to arrange four letters from the letters of the word "TATTERS"?		dictionary, then find the rank of the word Ramayan.			
25.	A person has 3 sons. He owns 101 shares of					
	the same amount of a company. He wants to	30.	Consider a class of 5 girls and 7 boys. The			
	give these shares to his sons so that no son should have more shares than the combined		number of different teams consisting of 2 girls and 3 boys that can be formed from this class,			
	total of the other two. Find the number of ways		if there are two specific boys A and B, who refuse			
	in which he can distribute the shares.		to be the members of the same team, is			