NEET ANSWER KEY & SOLUTIONS

SUBJECT :- CHEMISTRY

CLASS :- 11 th							PAPER CODE :- CWT-7						
CHAPTER :- IONIC EQUILIBRIUM ANSWER KEY													
1.	(C)	2.	(A)	3.	(C)	4.	(C)	5.	(C)	6.	(B)	7.	(A)
8.	(C)	9.	(A)	10.	(A)	11.	(A)	12.	(D)	13.	(B)	14.	(B)
15.	(B)	16.	(C)	17.	(B)	18.	(C)	19.	(D)	20.	(B)	21.	(C)
22.	(A)	23.	(C)	24.	(A)	25.	(A)	26.	(D)	27.	(B)	28.	(B)
29.	(B)	30.	(A)	31.	(D)	32.	(A)	33.	(A)	34.	(B)	35.	(D)
36.	(D)	37.	(C)	38.	(A)	39.	(B)	40.	(A)	41.	(C)	42.	(C)
43.	(A)	44.	(A)	45.	(B)	46.	(C)	47.	(A)	48.	(C)	49.	(B)
50.	(A)												

SOLUTIONS						
1. Sol.	SECTION-A (C) Because it gain and also lose the proton $H_2O + H_2O \Longrightarrow H_3O^+ + OH^-$	8. Sol. 9.	(C)Ostwald's dilution law is valid for weak electrolytes.(A)			
2. Sol.	(A) H ₃ PO ₃ is dibasic so NaH ₂ PO ₃ & Na ₂ HPO ₃ both exist.	Sol. 10.	pH = ⊣og[H⁺] ; 7.4 = ⊣og[H⁺] ; [H⁺] = 4 × 10 ⁻⁸ M (A)			
3. Sol.	(C) The molecule shows that three H atoms are replaceable, i.e., basicity of acid.	Sol. 11. Sol.	T \uparrow , [H ⁺] \uparrow , pH \downarrow (A) More is K _a , lesser is pK _a (pK _a = - log K _a),			
4. Sol.	(C) Conjugate acid base pair are differ by a proton (H ⁺). $\begin{array}{c}H_2F^+ & \stackrel{-H^+}{\longrightarrow} & HF\\ \text{(acid)} & \text{(base)}\end{array}$	12. Sol.	more is acidic strength. (D) (A) $[H^+] = y \times 10^{-x}$ $\Rightarrow pH = -log[H^+]$ $\Rightarrow -log [y \times 10^{-x}]$			
5.	(C)		$\begin{array}{c} \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ x \log_{10} 10 - \log y \end{array}$			
Sol.	$H_3BO_3 = HO - B OH$ electron deficient species So it will behave as Lewis acid.		$\Rightarrow x - \log y.$ (B) $[H^+] = \frac{1}{y} \times 10^{-x}$ $\Rightarrow pH = -\log\left[\frac{1}{y} \times 10^{-x}\right] \Rightarrow x - \log\frac{1}{y}$			
6. Sol.	(B) Those substance which accept the proton are called Bronsted base and which donate the proton are called Bronsted acid. $HCO_3^- + H^+ \rightleftharpoons H_2CO_3$ (as Bronsted base) $HCO_3^- \rightleftharpoons H^+ + CO_3^{}$ (as Bronsted	13. Sol.	$\Rightarrow x + \log y.$ (C) $[H^+] [OH^-] = {}^{-14}$ $\Rightarrow - \log[H^+] [OH^-] = -\log 10^{-14}$ $\Rightarrow -\log H^+ - \log OH^- = 14$ pH = 14 + log[OH^-]. (B) Millimole of H^+ = 0.3 × 500 = 150 Millimole of OH^- = 0.1 × 500 = 50			
7. Sol.	acid) (A) In weak electrolyte, the degree of dissociation, $\alpha = \sqrt{\frac{K}{C}}$. So it increases with increasing dilution.		After neutralization Millimole of H ⁺ left = 150 - 50 = 100. So, $[H^+] = \frac{100}{500 + 500} = \frac{1}{10}$ $pH = -\log\left(\frac{1}{10}\right) = 1.$			

1

14. (B) pH of the solution A = 3 Sol. $[H^+]_{A} = 10^{-3} \text{ M}.$ pH of the solution B = 2[H⁺]_B =10⁻² M $[H^+] = 10^{-3} + 10^{-2} = 10^{-3} + 10 \times 10^{-3} =$ 11×10^{-3} 2 pH = 2.2615. (B) Initial \Rightarrow [OH⁻] = $\frac{2}{200}$ = 10⁻² M \therefore pH = 12 Sol. Final \Rightarrow [OH⁻] = 10⁻² + $\frac{0.04}{40 \times 0.1}$ = 2 × 10⁻² ∴ pH = 12.3 So, change = 12.3 – 12 = +0.3 16. (C) As the solution is acidic, pH < 7. This is Sol. because [H⁺] from H₂O cannot be neglected in comparison to 10⁻⁸ M. 17. (B) CO₂ is acidic oxide, which on dissolution in Sol. water develops acidic nature. 18. (C) $\alpha \% = \sqrt{\frac{K_a}{C}} \times 100$ Sol. $\Rightarrow \sqrt{\frac{1.8 \times 10^{-5}}{0.2}} \times 100 = 0.950.$ 19. (D) $[H^+] = \alpha.C = \frac{2}{100} \times .02$; $[H^+] = 4 \times 10^{-4} M$ Sol. pH = -log [H⁺] = 4 - log 4 ; pH = 3.3979 20. (B) $CH_3COOH \rightleftharpoons CH_3COO^- + H^+$ Sol. t=0 0 0.1-0.001 0.1 0.001 t=t_{ea} 0.001 $K_{a} = \frac{[CH_{3}COO^{-}][H^{+}]}{[CH_{3}COOH]} = \frac{(0.001)(0.001)}{(0.1)}$ \Rightarrow K₂ = 10⁻⁵. 21. (C) $K_a \propto \alpha^2$ Sol. $\frac{K_{a_1}}{K_a} = \left(\frac{4}{9}\right)^2 = \frac{16}{81}$ 22. (A) Sol. On adding the 3 ionisation reactions,

ionisation constants will get multipled.

23. $K_a = 10^{-4} \times 10^{-6} \times 10^{-8} = 10^{-18}$ Sol. or, $10^{-18} = \frac{[H^+]^3 [PO_4^{3-}]}{[H_2PO_4]} \Rightarrow [H^+] = 10^{-5}$ \Rightarrow pH = 5 24. Sol. 25. (A) Anion of weak acid will Sol. undergo hydrolysis. So, PO₄³⁻. 26. (D) Sol. $NaClO_4$ is a salt of strong acid $HClO_4$. 27. (B) Sol. Anionic hydrolysis results in basic solution. 28. (B) $pH = 7 + \frac{1}{2} (pK_a - pK_b) = 7 + \frac{1}{2} [0]$ Sol. pH = 7.29. (B) $pK_{b} > pK_{a}$ Sol. i.e. $K_a > K_h$ i.e. acidic. 30. (A) Salt is of WAWB Sol. $\sqrt{K_h} = \frac{h}{1-h}$ $\sqrt{6.25 \times 10^{-6}} = \frac{h}{1-h}$ $25 \times 10^{-4} = \frac{h}{1-h}$ %h = 25 × 10⁻² = 0.25 31. (D) $pH = \frac{1}{2} [pK_w + pK_a + log_{10}C] = \frac{1}{2} [14 + 5 - 100] + 100 = 100$ Sol. $\log 2 + \log_{10} 10^{-2}] = 8.35.$ 32. (A) Sol. Acetic acid will dissociate less due to common ion effect of CH₃COO⁻ So, H⁺ concentration will decrease hence pH will increase. 33. (A) Sol. On adding small amount of acid (H⁺) and base (OH-), weak acid or weak base will form respectively. 34. (B)

Sol. Weak base should be in excess.

	(D)
Sol.	$pH = pK_a + \log \frac{[HA]}{[NaA]} = 3.346 + \log \frac{[HA]}{[NaA]}$
	$\frac{[0.20]}{500} \times \frac{[500]}{[0.05]} = 3.95$
	500 [0.05]
	SECTION-B
36.	(D)
37. Sol.	(C) Fact.
38.	(A)
	(B) $CH_3COOH + NaOH \longrightarrow$ $CH_3COONa + H_2O$ 10 milimol 5 mili mol 5 0 5 - $P^{H} = 4.74 + \log \frac{5}{5} = 4.74$
40. Sol.	(A) $Ag_2CrO_4 \rightleftharpoons [2Ag^+] + [CrO_4^{-2}]$ Hence $K_{sp} = [Ag^+]^2 [CrO_4^{-2}]$
41. Sol.	(C) $K_{SP}(CaF_2) = (2x)^2(x) = 4x^3$.
42.	(C)
Sol.	$PbCl_2 \longrightarrow Pb^{2+} + 2Cl^{-}$
	K_{sp} of $PbCl_2 = [Pb^{2+}] \times [Cl^{-}]^2$;
	$K_{sp} = S \times (2S)^2$
	$K_{sp} = S \times 4S^2$; $S^3 = \frac{K_{sp}}{4}$; $S = \sqrt[3]{\frac{K_{sp}}{4}}$
43. Sol.	(A) MnS $\implies Mn^{+2} + S^{2-}$ S S S ² = 1.1 × 10 ⁻²¹ S = 10 ⁻¹¹ $\sqrt{11}$ ZnS $\implies Zn^{+2} + S^{2-}$ S S S ² = 1.1 × 10 ⁻²³ S = 10 ⁻¹² $\sqrt{11}$ PbS $\implies Pb^{+2} + S^{2-}$ S S S ² = 1.1 × 10 ⁻³⁵ S = 10 ⁻¹⁸ $\sqrt{11}$ CuS $\implies Cu^{+2} + S^{2-}$ S S S ² = 1.1 × 10 ⁻³⁰ S = 10 ⁻¹⁵ $\sqrt{11}$ So, concentration is maximum in MnS

44.	(A)				
Sol.	$AgCrO_4 \rightarrow 2Ag^+ + CrO_4^{}$				
	$K_{sp} = (2S)^2 S = 4S^3$				
	$S = \left(\frac{K_{sp}}{4}\right)^{\frac{1}{3}} = \left(\frac{32 \times 10^{-12}}{4}\right)^{\frac{1}{3}} = 2 \times 10^{-4} M.$				
45. Sol.	(B) The solubility of $BaSO_4$ in g/litre is given 2.33 × 10 ⁻³				
	\therefore in mole/litre.= $n = \frac{W}{m. wt}$ 1×10 ⁻⁵ =				
	$\frac{2.33 \times 10^{-3}}{222}$				
	233 Because BaSO ₄ is a compound $K_{sp} = S^2 = [1 \times 10^{-5}]^2 = 1 \times 10^{-10}$				
46. Sol.	(C) Let S is the solubility of BaF_2 in a solution of $Ba(NO_3)_2$.				
	Then $K_{SP} = [Ba^{2+}] [F^{-}]^2$.				
	Then $[F^-] = 2S;$				
	Then $\frac{1}{2}$ [F ⁻] = S				
47.	(A)				
Sol.					
	$\begin{array}{cccc} AgCI & \longrightarrow & Ag^+ & + & CI^- \\ & & S & & S \\ I(A_{C})^2 & Q_{C} & & & & \\ \end{array}$				
	$K_{sp} = S^2 = S = \sqrt{K_{sp}}$				
	$\Rightarrow \qquad S \qquad = \sqrt{10^{-10}} = 10^{-5}.$				
48. Sol.	(C) 0.01 <i>M</i> CaCl ₂ gives maximum Cl ⁻ ions to keep K_{sp} of <i>AgCl</i> constant, decrease in [Ag ⁺] will be maximum.				
49. Sol	(B) For appringly colluble colta, reason is not a				
Sol.	For sparingly soluble salts, reason is not a correct explanation. Hence both assertion				
	and reason are true but reason is not a				
	correct explanation of assertion.				
50.	(A)				
Sol.	Barium carbonate is more soluble in HNO_3 than in water become carbonate is a weak				

base and reacts with the $H^{\scriptscriptstyle +}\, \text{ion of } H\!NO_{\!3}$

causing the barium salt to dissociate. $BaCO_3 + HNO_3 \rightarrow Ba(NO_3)_2 + CO_2 + H_2O$

3