CLASS :- 11th

SUBJECT :- CHEMISTRY

CHAPTER :- IONIC EQUILIBRIUM

JEE MAIN ANSWER KEY & SOLUTIONS

PAPER CODE :- CWT-7

ANSWER KEY													
1.	(B)	2.	(C)	3.	(C)	4.	(B)	5.	(C)	6.	(A)	7.	(D)
8.	(C)	9.	(D)	10.	(A)	11.	(A)	12.	(D)	13.	(C)	14.	(C)
15.	(B)	16.	(A)	17.	(C)	18.	(D)	19.	(B)	20.	(B)	21.	4
22.	200	23.	28	24.	5	25.	2	26.	1	27.	4	28.	5
29.	50	30.	2										

1. (B)

Sol.
$$pH = pK_{a_2} + \log \frac{[CO_3^{2-}]}{[HCO_3^{2-}]} \implies (11 - \log 4) +$$

$$\log\left(\frac{1}{2}\right) \Rightarrow 10.1$$
]

2. (C)

Concentration of acid = $\frac{N}{20}$ = 0.05 N Sol.

> Out of 100 molecules, 3.5 molecules have been dissociated

> .: Out of 1 molecules the no. of dissociated molecules

$$=\frac{35}{100}=0.035=\alpha$$

$$K_{a} = \frac{C\alpha^{2}}{(1-\alpha)}, K_{a} = \alpha^{2}C$$
$$K_{a} = \frac{0.035 \times 0.035 \times 1}{20}$$
$$K_{a} = 6.125 \times 10^{-5}$$

3. (C)

Sol.
$$\begin{array}{c} \mathsf{NH}_3 + \mathsf{H}_2\mathsf{O} \rightleftharpoons \mathsf{NH}_4^+ + \mathsf{OH}^-\\ \mathsf{I}_-\mathsf{X} & \mathsf{X} \end{array}$$
$$\begin{bmatrix} \mathsf{NH}_4^+ \end{bmatrix} \begin{bmatrix} \mathsf{OH}^- \end{bmatrix} \qquad \mathsf{X}^2 \end{array}$$

$$K_{b} = \frac{\left[\mathsf{NH}_{4} \right] \left[\mathsf{OH}_{3} \right]}{\left[\mathsf{NH}_{3} \right]} = \frac{\mathsf{X}^{2}}{\left(1 - \mathsf{X} \right)} = \mathsf{X}^{2}$$
$$(\because 1 - \mathsf{X} \approx 1)$$
$$\therefore \mathsf{X} = \left[\mathsf{OH}^{-} \right] = \sqrt{\mathsf{K}_{b}} = \sqrt{1.8 \times 10^{-5}}$$
$$= 4.24 \times 10^{-3} \mathsf{M}$$

 \mathbf{X}^2

SOLUTIONS 4.

HA + BOH
$$\rightleftharpoons$$
 BA + H₂O
weak strong
or HA + B⁺ + OH⁻ \rightleftharpoons B⁺ + A⁻ + H₂O or
HA + OH⁻ \rightleftharpoons A⁻ + H₂O

K
$$\frac{\left[A^{-}
ight]}{\left[HA
ight]\left[OH^{-}
ight]}$$

Also for weak acid HA $HA \rightleftharpoons H^+ + A^-$

$$\mathsf{K}_{\mathsf{a}} \frac{\left[\mathsf{H}\mathsf{A}^{+}\right]\left[\mathsf{A}^{-}\right]}{\left[\mathsf{H}\mathsf{A}\right]}$$

$$\frac{K_a}{K} = K_w \text{ or } K = \frac{K_a}{K_w} = \frac{10^{-4}}{10^{-14}} = 10^{10}$$

5. (C)

Sol. $\rm NH_4OH$ is a weak base and partially dissociated

 $NH_4OH \rightleftharpoons NH4^+ + OH^-$ Concentration 1 0 0 before dissociation Concentration $1-\alpha \alpha$ α after dissociation \therefore [OH⁻] = C α = 2 × 10⁻³ × $\frac{2}{100} = 4 \times 10^{-5} M$

100

$$pOH = -\log[OH^{-}]$$

 $= -\log 4 \times 10^{-5} = 4.4$
 $pH = 14 - 4.4$
 $= 9.6$

6. (A)
Sol.
$$[H^+]$$
 ion concentration = 5 × 10⁻⁴ mole/litre
 $pH = -\log [5 × 10^{-4}]$
 $= -(\log 5 + \log 10^{-4})$
 $= -0.7 + 4$
 $= 3.3$

7. (D)
50. For weak acid
$$K_a = \alpha^2 \cdot C$$

 $\therefore \alpha = \sqrt{\frac{K_a}{C}} = \sqrt{\frac{4.9 \times 10^{-8}}{0.1}}$
 $= 7 \times 10^{-4}$
pH = $-\log H^+ = -\log \alpha C$
 $= -\log 7 \times 10^{-4} \times 10^{-1}$
 $= 4.1549 = 4.155$
8. (C)
50. [HSaC] = $\frac{4 \times 10^{-4}}{200 / 1000} = 2 \times 10^{-3} M$
The dissociation of HSaC takes places in the presence
of [H⁺] = 10^{-3}
HSaC \rightarrow H⁺ SaC⁻
conc. before 2×10⁻³ 10⁻³ 0
dissociation
In presence of H⁺ the dissociation of HSaC is
almost negligible because of common ion effect.
Thus at equilibrium
[HSaC] = 2 × 10^{-3}, H⁺ = 10^{-3}
 $K_a = \frac{[H+][SaC-]}{[2 \times 10^{-3}]}[SaC-]}$
 $\therefore 2 \times 10^{-12} = \frac{[10^{-3}][SaC^-]}{[2 \times 10^{-3}]}$
 \therefore [SaC⁻] = 4 × 10⁻¹² M
9. (D)
Sol. 25 ml $\frac{M}{5}$ NaOH will be neutralise 25 ml $\frac{M}{5}$ HCl.
Hence, 50 ml $\frac{M}{5}$ HCl get rest and to the mixing
of
both solution will give total 100 ml volume.
 $N_1V_1 = N_2V_2$
Sol. (B) Solu

$$N_2 = \frac{50 \times N}{5 \times 100} = .1$$
 Hence, pH = 1

10. (A)
Sol.
$$HA + H_2O \implies A^- + H_3O^+, Ka = 1.0 \times 10^{-6}$$

Thus $K = \frac{1}{K_a} = 1.0 \times 10^6$

ol. The addition of NaOH converts equivalent amount of acetic acid into sodium acetate. Hence, Concen of acetic acid after the addition of

NaOH =
$$\frac{30}{70} \times 0.2M$$

Hense, Using the expression
pH = pK_a + log $\frac{[Salt]}{[Acid]}$
= $-log(2 \times 10^{-5}) + log(\frac{20}{30})$
= 4.699 - 0.177 = 4.522

For Basic buffer solutions

OH =
$$-\log K_{b} + \log \frac{[Salt]}{[Base]}$$

et a mole of NH₄Cl are added to (1.0 × 1) mole

of NH_4OH in 1 litre. Given pH = 9 ... pOH = 5

∴ 5= - log 1.8 × 10⁻⁵ + log
$$\frac{a}{1.0 \times 1}$$

or a = 1.8

bl. Concentration of monobasic acid = 0.01 M pH = 4 If the acid is completely ionised the pH of the acid would be pH = $-\log 0.01$ = $-\log 10^{-2} = 2$ So it is a weak acid. The sodium salt of a weak acid when dissolved the anions will be hydrolysed giving rise to OH⁻ ion concentration. The solution will be basic. So statement (C) is incorrect.

J. Solubility of M₂X₃ = x gm mole/litre M₂X₃ ⇒ 2M⁺³ + 3X⁻² \therefore [M⁺³] = 2x [X⁻²] = 3x Solubility product K_{SP} = (2x)².(3x)³=108 x⁵

Sol. (B) Solubility =
$$\frac{1}{Concentration of commonion}$$

$$S_{1} = \frac{K_{sp}}{0.04} = 25K_{SP}$$

$$S_{2} = \frac{K_{sp}}{0.01} = 100K_{SP}$$

$$S_{3} = \frac{K_{sp}}{0.05} = 20K_{SP}$$
So, S₂ > S₁ > S₃ Again solubility will be greatest in water.
So, S₀ > S₂ > S₁ > S₃

16. (A) Sol. In 0.1 M AgNO₃ $AgNO_3 \rightleftharpoons Ag^+ + NO_3^ AgCI \rightleftharpoons Ag^+ + CI^ K_{SP} = [Ag^+] [Cl^-]$ Now $[Ag^+]$ can be taken as $[AgNO_3]$ while $[CI^-]$ is the solubility of AgCI $\therefore \mathrm{CI} = \frac{\mathrm{K}_{\mathrm{sp}}}{\left\lceil \mathrm{Ag}^{+} \right\rceil} = \frac{2.8 \times 10^{-10}}{0.1}$ ∴ Solubility of AgCl = 2.8×10⁻⁹ mole/litre 17. (C) $K_{h} = \frac{K_{w}}{K_{2}} = \frac{10^{-14}}{4 \times 10^{-3}}$ Sol. $= 0.25 \times 10^{-11}$ $h = \sqrt{\frac{K_h}{c}} = \sqrt{\frac{0.25 \times 10^{-11}}{0.4}}$ $= 2.5 \times 10^{-6}$ 18. (D) Ammonium formate = salt of (WA + WB) Sol. $pH = \frac{1}{2}[pK_{W} + pK_{a} - pK_{b}]$ $=\frac{1}{2}$ [14 + 3.8 - 4.8] = 6.5 19. (B) Using the expression Sol. $pH = pK_a + log \frac{[Salt]}{[Acid]}$ we get, $6 = -\log(1.0 \times 10^{-5}) + \log \frac{[Salt]}{[0.02M]}$ or $\frac{[Salt]}{[0.02M]} = 10$ or [Salt] = 0.2 M 20. (B) $pH = pK_a + log \frac{[Salt]}{[Acid]}$ Sol. $= -\log(1.0 \times 10^{-5}) + \log\frac{(0.02 - 0.01)}{(0.03 + 0.01)}$ $=5 + \log \frac{1}{4} = 5 - 0.6$

21.

4 Sol. 224 moles CO₂ at STP = 0.01 moles CO₂ (i) if NaOH is limiting \Rightarrow Na₂CO₃ + NaHCO₃ = 0.01/L (ii) if NaOH is in excess \Rightarrow Na₂CO₃ =100 m moles/L, NaOH = y moles Volume of HCI used with ph as indicator = 30 m moles of HCI = $30 \Rightarrow$ NaOH is present in excess \Rightarrow m eq of HCl = m eq of Na₂CO₃ + m eq of NaOH 30 = 10 + m eq of NaOH \Rightarrow M eq of NaOH = 20 m eq =20 m mole $Na_2CO_3 = 10 \text{ m}$ mole $\Rightarrow 20 \text{ m}$ mole NaOH used in reaction 2NaOH + CO₂ \rightarrow Na₂CO₃ Total NaOH originally present = 40 m mole in 1000 ml \Rightarrow 0.04 M Ans. 1 22. 200 $[OH^{-}] = 10^{-5} \times \frac{0.1}{0.2} = \frac{10^{-5}}{2}$ Sol. $[Mg^{+2}] = \frac{K_{sp}}{(OH^{-})^2} = \frac{10^{-11}}{(10^{-5}/2)^2}$ $= 4 \times 10^{-1} = 0.4$ moles of MgCl₂ = 0.2 moles millimoles = $0.2 \times 1000 = 200$ 1 23. 28 Sol. To prevent precipitation of AgCI $[Ag^+] [CI^-] = K_{sp}$ $[Ag^+] \times 0.001 = 10^{-10}$ $[Ag^+] = \frac{10^{-10}}{0.001} = 10^{-7} \,\mathrm{M}$ Let a mols of NH_3 are added (V = 1L) $Ag^+ + 2NH_3 \implies Ag(NH_3)_2^+$ $K = 10^8$ Initial concⁿ 0.004 а 10⁻⁷ at eqm (a-0.008) 0.004 0.004 $\overline{(a-0.008)\times 10^{-7}}$ = 10⁸ $\frac{0.004}{\left(a - 0.008\right)^2} = 10$

 $(a - 0.008)^2 = 0.0004 = 4 \times 10^{-4}$

a - 0.008 = 0.02a = 0.028 mole Millimoles of NH₃ reqd. = 28]

= 4.4

24.	5	28.	5			
Sol.	$[\mathrm{H}^{+}]_{\mathrm{HOCl}} = [\mathrm{H}^{+}]_{\mathrm{CH}_{3}\mathrm{COOH}}$	Sol.	We have $pH = -\log K_{a} + \log \frac{[Salt]}{[Aoid]}$			
	\Rightarrow C × 2 × 10 ⁻⁶ = 0.1 × 10 ⁻⁵					
	\Rightarrow C = 0.5 M					
	0.5 × 10 = 5 Ans.		0.2×1000			
	Alternative :					
	[H ⁺] = 10 ⁻³ in HOCI		$= -\log 2 \times 10^{-5} + \log 0.1 \times 1000$			
	$\therefore \frac{10^{-3} \times 10^{-3}}{C - 10^{-3}} = 2 \times 10^{-6}$		100 = 4.7 + 0.3 = 5			
	C = 0.501	29.	50			
	∴ = 5.01 = 0005 Ans.]	Sol.	Let V ml of 0.1 M HCOONa be mixed to 50ml o 0.05 M HCOOH in mixture			
25.	2		0.1×V			
Sol.	$NH_4OH \Longrightarrow NH_4^+ + OH^-$		$[HCOONa] = \overline{(V+50)}$			
	1 0 0					
	$c(1-\alpha)$ ca ca		$[HCOOH] = \frac{50 \times 0.05}{(14 \times 50)}$			
	Given pH = 11		(v + 50)			
	$[H^+] = 10^{-11}$ [$[H^+]$ [OH] = 10^{-14}]		[Salt]			
	$[OH_{-}] = 10^{-3} = c\alpha$		$pH = -\log K_a + \log \left[\frac{1}{Acid} \right]$			
	Since, c = 0.05					
	$\therefore \ \alpha = \frac{10^{-3}}{c} = \frac{10^{-3}}{0.05} = 2 \times 10^{-2} \text{ or } 2\%$		$4.0 = 3.7 + \log \frac{(0.1 \times V)/(V+50)}{2.5/(V+50)}, V = 50 \text{ml}$			
		20	2			
26.	1	Sol	$Z \longrightarrow M^{x+} + XOH^{-}$			
Sol.	pH = –log10[H ⁺]	001.	S XS			
	The concentration of H ⁺ ions is expressed in		$K_{SD} = S. (XS)^{x}$ Given S = 10 ⁻⁴			
	gm equivalent Molarity of H SO = 0.05		or $4 \times 10^{-12} = 10^{-4} \cdot (X \cdot 10^{-4})x$			
	• Normality = $0.05 \times 2 = 0.1$		$10^{-4} \times 10^{-4x} X^{x} = 4 \times 10^{-12}$			
	$\therefore pH = -\log 0.1$		$X^{(10^{+})} = 4 \times 10^{-2} \therefore \times = 2$			
	or pH = 1					
27	4					
Sol.	We know,					

 $K_{b}(x^{-}) = 10^{-10}$ Also for conjugate acid - base pair

$$\begin{split} & \mathsf{K}_{\mathsf{a}_{\mathsf{HX}}} \times \mathsf{K}_{\mathsf{b}\left(\mathsf{x}^{-1}\right)} = 10^{-14} \\ & \mathsf{K}_{\mathsf{a}\left(\mathsf{HX}\right)} \times 10^{-4} \\ & \mathsf{Now}\left[\mathsf{HX}\right] = \left[\mathsf{X}_{-}\right] \\ & (\mathsf{acid}) (\mathsf{salt}) \end{split}$$
$$& \mathsf{pH} = -\log \mathsf{K}_{\mathsf{a}} + \log \frac{\left[\mathsf{Salt}\right]}{\left[\mathsf{Acid}\right]} \\ & = -\log 10^{-4} \\ & \mathsf{pH} = 4 \end{split}$$

be mixed to 50ml of