NEET : CHAPTER WISE TEST-7					
SUBJECT :- CHEMISTRY			DATE		
CLASS:- 11th			NAME		
	ΓER :- IONIC EQUILIBR	RIUM		SECTION	
			ION-A)		
1.	According to Brons concept, water is a/an: (A) Base (C) Amphoteric	(B) Acid	9.	pH of human b concentration will b (A) 4× 10 ⁻⁸ (C) 4 ×10 ⁻⁴	(B) 2 × 10 ⁻⁸
	(0) /	(2) 33		(0)	(=)=
 3. 	Which of the following exist(s)? (I) NaH ₂ PO ₃ (III) Na ₃ PO ₃ (A) I and II only (C) II and III only An acid with molelcul	(II) Na ₂ HPO ₃ (B) I, II and IIII (D) III only	10.	solution is heated following statemen (A) pH will decreas (B) pOH will increas (C) pH will increas	se ise
o .	forms three types of $C_7H_5O_3Na$, $C_7H_4O_3Na$. The basicity of the acid (A) One (C) Three	sodium salts. i.e., and C ₇ H ₃ O ₃ Na ₃ .	11.	some acids (at 2 Indicate which is water? (A) 1.4 × 10 ⁻²	ssociation constants of 25°C) are as follows. the strongest acid in (B) 1.6 × 10 ⁻⁴
4.	The following equilibre when $HClO_4$ is dissolve $HF + HClO_4 \Longrightarrow ClC$. Which of the following conjugate acid base part (A) HF and $HClO_4$. (C) HF and H_2F^+ .	ed in weak acid HF. $O_4^- + H_2^-F^+$ g is correct set of hir? (B) HF and CIO $_4^-$	12.	(B) If $[H^+] = \frac{1}{y} \times 10$	statement: -x M then pH = x - log y -x M then pH = x + log y of a solution = 14 + log
5.	Boric acid H ₃ BO ₃ is a :			(D) All of the abov	C
6.	(A) Arrhenius acid(C) Lewis acidWhich of the followin	(B) Bronsted acid (D) All of these g can act both as	13.	•	obtained by mixing 500 D_4 with 500 ml of 0.1 M D_4 (C) 2 D_4 (D) 7
	Bronsted acid and Bron (A) Cl ⁻ (C) H ₃ O ⁺	nsted base ? (B) HCO ₃ (D) OH-	14.	•	olution A is 3 and it is r solution B having pH 2
7.	The degree of dissociation in a weak electrolyte increases: (A) On increasing dilution (B) On increasing pressure (C) On decreasing dilution (D) None of these		15.	keeping the volume same. If both are mixed, then resultant pH of the solution will be: (A) 3.2 (B) 2.26 (C) 3.4 (D) 3.5	
8.	Ostwald's dilution law results with the selectrolyte? (A) HCI (C) CH ₃ COOH	y gives satisfactory solution of which (B) HNO ₃ (D) NaOH	15.	N/I	(B) +0.3 (D) +0.7

- 16. The pH value of 1.0×10^{-8} M HCl solution is less than 8 because
 - (A) HCl is completely ionised at this concentration
 - (B) The ionization of water is negligible
 - (C) The ionization of water cannot be assumed negligible in comparison with this low concentration of HCl
 - (D) The pH cannot be calculated at such a low concentration of HCl
- 17. Pure water is kept in a vessel and it remains exposed to atmospheric CO₂ which is absorbed. Then its pH will be:
 - (A) Greater than 7
 - (B) Less than 7
 - (C)7
 - (D) Depends on ionic product of water
- 18. Find the percentage ionisation of 0.2 M acetic acid solution, whose dissociation constant is 1.8×10^{-5}
 - (A) 0.198
- (B) 0.290
- (C) 0.950
- (D) None of these
- 19. 0.02 M monobasic acid dissociates 2%. Hence, pH of the solution is:
 - (A) 0.3979
- (B) 1.3979
- (C) 1.699
- (D) 3.3979
- **20.** Concentration of CH₃COO⁻ is 0.001 M, when 0.1 moles of CH₃COOH were dissolved in 1L water. K_a of CH₃COOH is :
 - (A) 2×10^{-5}
- (B) 10^{-5}
- $(C) 10^{-6}$
- (D) 2×10^{-4}
- **21.** For two weak acis A and B, the ratio of their percent ionization is 4 : 9. The ratio of their K_a would be :
 - (A) 4:9
- (B) 2:3
- (C) 16:81
- (D) 3:2
- 22. The ionisation constant of a tribasic acid is K_a . If its first , second and third ionisation constant are K_{a_1} , K_{a_2} and K_{a_3} respectively then :
 - (A) $K_a = K_{a_1} \times K_{a_2} \times K_{a_3}$
 - (B) $K_a = \frac{K_{a_1}}{K_{a_2} \times K_{a_3}}$
 - (C) $K_{a_2} = \frac{K_{a_1} \times K_a}{K_{a_2}}$
 - (D) None of these

23. What will be the pH of a 0.01 M H_3PO_4 solution having $[PO_4^{3-}] = 10^{-5}$ M ?

$$\left[K_{a_1} = 10^{-4}, K_{a_2} = 10^{-6}, K_{a_3} = 10^{-8} \right]$$

- (A) 3
- (B) 4
- (C) 5
- (D) 6
- **24.** The reverse process of neutralisation is :
 - (A) Hydrolysis
 - (B) Decomposition
 - (C) Dehydration
 - (D) Synthesis
- **25.** Which of the following salts undergo anionic hydrolysis ?
 - (A) Na₃PO₄
- (B) NaCl
- (C) NH₄Cl
- (D) FeSO₄
- **26.** The aqueous solution of which of the following salt has the lowest pH?
 - (A) NaClO
- (B) NaClO₂
- (C) NaClO₃
- (D) NaClO₄
- **27.** Select the correct combination :
 - (A) The aqueous solution of each Na_3BO_3 and Na_3PO_4 Acidic nature
 - (B) The aqueous solution of each Na_3BO_3 and CH_3COONa basic nature
 - (C) The aqueous solutions of each ${\rm CH_3COONa}$ and ${\rm NaCN}$ acidic nature
 - (D) The aqueous solutions of each Na₃PO₄ and NH₄CI acidic nature
- 28. What is the pH of an aqueous solution of ammonium acetate ($K_a = K_b = 1.8 \times 10^{-5}$)?
 - (A) > 7
- (B) 7.0
- (C) < 7.0
- (D) Zero
- 29. If pK_b > pK_a then the solution of the salt of weak acid and weak base will be
 - (A) Neutral
- (B) Acidic
- (C) Basic
- (D) Amphoteric
- 30. The hydrolysis constant of 0.5~M ammonium benzoate is $6.25~\times~10^{-6}$. The percentage hydrolysis of the salt is :
 - (A) 0.25
- (B) 0.177
- (C) 0.125
- (D) 0.50
- 31. The pH of 0.01 M sodium acetate solution is : $[K_a(CH_3COOH)] = 2 \times 10^{-5}$
 - (A) 7.25
- (B) 6.5
- (C) 8.05
- (D) 8.35

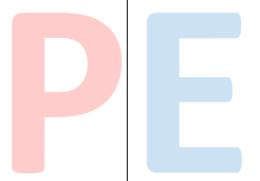
- **32.** Addition of sodium acetate solution to acetic acid cause the following change
 - (A) pH increases
 - (B) pH decreases
 - (C) pH remains unchanged
 - (D) pH becomes 7
- **33.** Buffer solutions have constant acidity and alkalinity because :
 - (A) these give unionised acid or base on reaction with added acid or alkali.
 - (B) acids and alkalies in these solution are shielded from attack by other ions.
 - (C) they have large excess of $H^{\scriptscriptstyle +}$ or $OH^{\scriptscriptstyle -}$ ions.
 - (D) they have fixed value of pH.
- 34. In which of the following respective volume ratios should 0.1 M NH₄OH solution & 0.1 M HCl solution be mixed, so that the resulting solution behaves like a buffer solution?
 - (A) 1:1
 - (B) 2:1
 - (C) 1:2
 - (D) No such volume ratio is possible
- 35. A buffer solution is prepared by mixing 0.050 moles of a weak acid HA and 0.20 moles of NaA in sufficient amount of water to give 500 mL of solution (K_a for HA is 4.5 × 10-4). The pH of this solution is:
 - (A) 1.97
- (B) 2.17
- (C) 2.74
- (D) 3.95

(SECTION-B)

- **36.** Which of the following does not act as a buffer solution?
 - (A) Sodium acetate and acetic acid
 - (B) Boric acid and borax
 - (C) NH₄OH and NH₄Cl
 - (D) Sodium acetate and sodium hydroxide
- **37.** The pH indicators are :
 - (A) Salts of strong acids and strong bases
 - (B) Salts of weak acids and weak bases
 - (C) Either weak acids or weak bases
 - (D) Either strong acids or strong bases
- **38.** The pH range of methyl red indicator is :
 - (A) 4.2 to 6.3
- (B) 8.3 to 10.0
- (C) 8.0 to 9.6
- (D) 6.8 to 8.4
- 39. 0.1 dm³ of 0.1 M acetic acid is titrated against 0.1 M NaOH. When 50 cm³ of 0.1 M NaOH are added, the pH of the solution will be : (pK₃ = 4.74)
 - (A) 2.37
- (B) 4.74
- (C) 1.34
- (D) 5.74

- **40.** Which is the correct representation of the solubility product constant of Ag₂CrO₄?
 - (A) $[Ag^+]^2 [CrO_4^{-2}]$
 - (B) $[Ag^+][CrO_4^{-2}]$
 - (C) $[2Ag^+][CrO_4^{-2}]$
 - (D) $[2Ag^+]^2 [CrO_4^{-2}]$
- **41.** If the solubility of calcium fluoride in pure water is x mol/L, Its solubility product is:
 - (A) $\sqrt{2}x$
- (B) $2x^2$
- (C) $4x^3$
- $(D) x^2$
- **42.** The solubility of PbCl₂ is:
 - (A) $\sqrt{K_{sp}}$
- (B) $\sqrt{K_{sp}}$
- (C) $\sqrt[3]{\frac{K_{sp}}{4}}$
- (D) $\sqrt{8K_{sp}}$
- 43. The aqueous solution of which of the following sulphides would contain maximum concentration of S^{2-} ions:
 - (A) MnS ($K_{sp} = 1.1 \times 10^{-21}$)
 - (B) ZnS ($K_{sp} = 1.1 \times 10^{-23}$)
 - (C) PbS ($K_{sp} = 1.1 \times 10^{-35}$)
 - (D) CuS ($K_{sp} = 1.1 \times 10^{-30}$)
- The solubility product of Ag_2CrO_4 is 32×10^{-12} . What is the concentration of CrO_4^{2-} ions in that solution
 - (A) 2×10^{-4} M
- (B) 16 × 10⁻⁴ M
- (C) 8×10⁻⁴ M
- (D) 8×10⁻⁸ M
- **45.** The solubility of BaSO₄ in water is 2.33×10^{-3} g / litre. Its solubility product will be (molecular weight of BaSO₄ = 233)
 - (A) 1×10⁻⁵
- (B) 1×10⁻¹⁰
- (C) 1×10^{-15}
- (D) 1×10⁻²⁰
- **46.** Solubility of BaF_2 in a solution of $Ba(NO_3)_2$ will be represented by the concentration term:
 - (A) $[Ba^{2+}]$
- (B) [F-]
- (C) $1/2[F^{-}]$
- (D) $2[NO_3^-]$
- **47.** K_{sp} of AgCl is 1 × 10⁻¹⁰. Its solubility in 0.1 M KNO₃ will be :
 - (A) 10⁻⁵ moles/litre
 - (B) > 10^{-5} moles/litre
 - $(C) < 10^{-5}$ moles/litre
 - (D) None of these
- **48.** Solubility of AgCl will be minimum in :
 - (A) 0.001M AgNO₃
- (B) Pure water
- (C) 0.01 M CaCl₂
- (D) 0.01 M NaCl

49. Assertion: A ionic product is used fro any types of electrolytes whereas solubility product is applicable only to sparingly soluble salts.


Reason : Ionic product is defined at any stage of the raction whereas solubility product is only appicable to the saturation stage.

- (A) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- (B) If both assertion and reason are true but reason is not the correct explanation of the assertion.
- (C) If assertion is true but reason is false.
- (D) If assertion is false but reason is true.

50. Assertion: $BaCO_3$ is more soluble in HNO_3 than in plain water.

Reason : Carbonate is a weak base and reacts with the H^+ from the strong acid, casuing the barium salt to dissociate.

- (A) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- (B) If both assertion and reason are true but reason is not the correct explanation of the assertion.
- (C) If assertion is true but reason is false.
- (D) If assertion is false but reason is true.

