JEE MAIN : CHAPTER WISE TEST PAPER-7					
SUBJE	ECT :- CHEMISTRY		DATE		
СПАР	IER :- IONIC EQUILIBRIUM (SEGT		SECTION		
1.	Calculate the pH of a solution containing 0.2 M HCO_3^- and 0.1 M CO_3^{2-} $[K_1(H_2CO_3) = 4 \times 10^{-7}; K_2(HCO_3^-) = 4 \times 10^{-11}]$ (A) 10.4 (B) 10.1 (C) 6.1 (D) 10.7	9.	Which of the following has pH is equal to near about one - (A) 100 mI $\frac{M}{10}$ HCI+100mI $\frac{M}{10}$ NaOH		
2.	The dissociation constant of a monobasic acid which is 3.5% dissociated in $\frac{N}{20}$ solution at 20°C is – (A) 3.5×10^{-2} (B) 5×10^{-3} (C) 6.125×10^{-5} (D) 6.75×10^{-2}		(B) $55ml\frac{M}{10}HCl + 100ml\frac{M}{10}NaOH$ (C) $10ml\frac{M}{10}HCl + 90ml\frac{M}{10}NaOH$ (D) $75ml\frac{M}{5}HCl + 25ml\frac{M}{5}NaOH$		
3.	Calculate $[OH^{-}]$ in 0.20 M solution of NH_3 if K_b for NH_3 is 1.8 × 10^{-5}.(A) 4.24×10^{-7} M(B) 4.24×10^{-5} M(C) 4.24×10^{-3} M(D) 4.24×10^{-2} M	10.	Calculate K for the A ⁻ + $H_3O^+ \rightleftharpoons HA + H_2O$ if K _a value for the acid HA is 1.0×10^{-6} . (A) 1.0×10^6 (B) 2.0×10^6 (C) 3.0×10^6 (D) 5.0×10^6		
4.	A certain weak acid has $K_a = 1.0 \times 10^{-4}$. Calculate the equilibrium constant for its reaction with a strong base - (A) 10^9 (B) 10^{10} (C) 10^{11} (D) 10^{12}	11.	20 ml of 0.2 M NaOH is added to 50 ml, of 0.2 M CH ₃ COOH to give 70ml, of the solution. What is the pH of the solution ? The ionization constant of acetic acid is 2×10^{-5} – (A) 4.522 (B) 5.568		
5.	Calculate pH of 0.002 N NH ₄ OH having 2% dissociation- (A) 7.6 (B) 8.6 (C) 9.6 (D) 10.6	12.	How many mole of NH ₄ Cl must be added to one litre of 1.0 M NH ₄ OH to have a buffer of pH = 9. K _{NH4OH} = 1.8 × 10 ⁻⁵ ? (A) 2.7 (B) 3.6 (C) 4.56 (D) 1.8		
6.	Calculate the pH of solution having H+ ion concentration of 5×10^{-4} mole/litre –(A) 3.3(B) 2.26(C) 1.26(D) 0.26	13.	The pH of a 0.01M solution of a monobasic acid is four. Which one of the following statement about the acid is incorrect – (A) When a little NaOH is added, it will form a		
7.	The dissociation constant of weak acid HA is 4.9×10^{-8} . After making the necessary approximations. Calculate pH in 0.1 M acid – (A) 1.155 (B) 2.155		 (B) It is a weak acid (C) It's sodium salt will be acidic (D) It's sodium salt will be basic 		
8.	(C) 3.155 (D) 4.155 Saccharin ($K_a = 2 \times 10^{-12}$) is a weak acid respectively by formula HSaC. A 4 × 10 ⁻⁴ mole	14.	A salt $M_2 X_3$ dissolves in water such that its solubility is x g. mole/litre. Its K_{SP} is – (A) x^5 (B) $6x^2$ (C) $108 x^5$ (D) $6x^5$		
	amount of Saccharin is dissolved in 200cc water of pH 3. Assuming no change in volume. Calculate the concentration of Sac. ions in the resulting solution at equilibrium - (A) 2×10^{-12} M (B) 3×10^{-12} M (C) 4×10^{-12} M (D) 5×10^{-12} M	15.	The solubility of AgCl in water, in 0.02 M CaCl ₂ , in 0.01M NaCl and in 0.05 M AgNO ₃ are S0, S ₁ ,S ₂ ,S ₃ respectively. Which of the following relationships between these quantities is correct – (A) S ₀ > S ₁ > S ₂ > S ₃ (B) S ₀ > S ₂ > S ₁ > S ₃ (C) S ₀ > S ₁ = S ₂ > S ₃ (D) S ₀ > S ₂ > S ₃ > S ₁		

16.	Solubility product of AgCl is 2.8×10^{-10} at 25° C. Calculate solubility of the salt in 0.1 M AgNO ₃ solution – (A) 2.8×10^{-9} mole/litre (B) 2.8×10^{-10} mole/litre (C) 3.2×10^{-9} mole/litre (D) 3.2×10^{-12} mole/litre	20	What amount of sodium propanoate should be added to one litre of an aqueous solution containing 0.02 mole of propanoic acid ($K_a =$ 1.0×10^{-5} at 25°C) to obtain a buffer solution of pH 6 – (A) 0.5M (B) 0.2M (C) 0.3M (D) 0.8M
17. 18.	$\begin{array}{ll} K_{a} \text{ for cyanoacetic acid is } 4 \times 10^{-3}. \text{ What is the value of degree of hydrolysis of } 0.4 \text{ M sodium cyano acetate solution } \\ (A) 4.5 \times 10^{-6} & (B) 5.5 \times 10^{-6} \\ (C) 2.5 \times 10^{-6} & (D) 3.5 \times 10^{-6} \\ \end{array}$ $\begin{array}{ll} \text{Calculate the pH of aqueous solution of } 1.0 \text{ M} \\ \text{HCOONH}_{4} \text{ assuming complete dissociation } \\ (pK_{a} \text{ of HCOOH = } 3.8 \text{ and } pK_{b} \text{ of NH}_{3} = 4.8) - \\ (A) 3.5 & (B) 4.5 & (C) 5.5 & (D) 6.5 \\ \end{array}$	20.	of HCl is dissolved in a buffer solution, if 0.01 mole of HCl is dissolved in a buffer solution containing 0.03 mole of propanoic acid $(K_a = 1.0 \times 10^{-5})$ and 0.02 moles of salt ,at $_{25^{\circ}C}$ - (A) 3.699 (B) 4.699 (C) 5.11 (D) 6.11
	(SECT	ON-B)	
21.	224 ml of CO ₂ (g) at 1 atm & 273 K was passed in 1 L of NaOH solution of unknown molarity. Resulting solution when titrated with 1 M HCl required 30 ml for phenolphthalein end point. Find the molarity of original NaOH solution. <i>[Write your answer multiplying by 100]</i> How many millimoles of MgCl ₂ should be added to just precipitate Mg(OH) ₂ in 500 ml buffer solution containing 0.1 M NH ₄ OH & 0.1 M (NH ₄) ₂ SO ₄ ? {Given : K _b (NH ₄ OH) = 10 ⁻⁵ ; K _{sp} [Mg(OH) ₂] = 10 ⁻¹¹ }	25. 26. 27.	Given : $K_{a, CH_3COOH} = 10^{-5}$ <i>Multiply actual answer with 10 and report</i> <i>your answer to nearest integer.</i> Determine degree of dissociation (%) of 0.05 M NH ₃ at 25°C in a solution of pH = 11. The pH of a 0.05 M solution of H ₂ SO ₄ in water is nearly – A certain buffer solution contains equal concentration of X ⁻ and HX. K _b for X ⁻ is 10 ⁻¹⁰ . Calculate pH of buffer–
23.	How many millimoles of NH ₃ must be added to one litre of 0.004 M-Ag ⁺ solution to just prevent the precipitation of AgCI, when [Cl ⁻] reaches 0.001 M? [Given : K_{sp} of AgCI = 1.0 × 10 ⁻¹⁰ and $K_{instability}$ of Ag(NH ₃) ₂ ⁺ = 1.0 × 10 ⁻⁸]	28. 29.	Calculate pH of a solution of given mixture (0.1 mole $CH_3COOH + 0.2$ mole CH_3COONa) in What volume of 0.1 M HCOONa solution should be added to 50ml of 0.05 M formic acid to produce a buffer solution of pH = 4.0 pK of
24.	Calculate the molarity of HOCI(aq) solution, $K_{a, HOCI} = 2 \times 10^{-6}$ that can be added in a 0.1 M aqueous solution of CH ₃ COOH without changing degree of dissociation of CH ₃ COOH.	30.	formic acid = 3.7 $M(OH)_x$ has $K_{SP} = 4 \times 10^{-12}$ and its solubility in water is 10^{-4} . Calculate the value of x.