JEE MAIN : CHAPTER WISE TEST PAPER-6										
SUBJECT :- PHYSICS					DATE					
CHAPI	ER:-CIRCULAR MOTIO	JN	(SECT		_A)	SECTION				
1.	If the radii of circular paths of two particles of same masses are in the ratio of $1 : 2$, then in order to have same centripetal force, their speeds should be in the ratio of : (A) $1 \cdot 4$ (B) $4 \cdot 1$			6.	~)	A stone of mass 1 kg tied to a light inextensible string of length L = $\frac{10}{3}$ m, whirling in a circular path in a vertical plane. The ratio of maximum tension in the string to the minimum tension in				
	(C) 1 : $\sqrt{2}$	(D) √2 :	1			the string is 4, If g is speed of the stone a circle is :	s taken to be 10 m/s ² , the at the highest point of the			
2.	A particle is kept fixed on a uniformly rotating turn-table As seen from the ground, the particle goes in a circle, its speed is 10 cm/s and acceleration is 10 cm/s ² .The particle is now					(A) 10 m/s	(B) $5\sqrt{2}$ m/s			
						(C) 10 √3 m/s	(D) 20 m/s			
	shifted to a new position to make the radius double of the original value. The new values of he speed and acceleration will be (A) 20 cm/s, 20 cm/s ² (B) 10 cm/s, 80 cm/s ² (C) 40 cm/s, 10 cm/s ² (D) 40 cm/s,40 cm/s ²		7.		A particle of mass m is suspended from a fixed point O by a string of length ℓ . It is displaced by angle θ ($\theta < 90^{\circ}$) from equilibrium position and released from there at t = 0. The graph, which shows the variation of the tension T in the string with time 't', may be :					
3.	If the apparent weigh equator is to be zero, rotate with angular velo	t of the bo then the e city	dies at the arth should			• •				
	(A) $\sqrt{\frac{9}{R}}$ rad/sec (C) $\sqrt{\frac{9}{2R}}$ rad/sec	(B) $\sqrt{\frac{29}{R}}$ (D) $\sqrt{\frac{39}{2R}}$	rad/sec rad/sec			$(A) \xrightarrow{T \uparrow} (C) \xrightarrow{T \uparrow} (C)$	$(B) \xrightarrow{T} (D) \xrightarrow{T} ($			
4.	Three point particles P, Q, R move in a circle of radius 'r' with different but constant speeds. They start moving at $t = 0$ from their initial positions as about in the figure. The angular					A particle moves a radius R. Its velocity	olong an arc of a circle of ∕ depends on the distance			
	positions as shown in the figure. The angular					covered s as v = a	\sqrt{s} , where a is a constant			
	& 3π respectively, in the same sense. The time interval after which they all meet is:					then the angle α between the acceleration and the function of s will be	ween the vector of the total e vector of velocity as a			
	P	R				(A) $\tan \alpha = \frac{R}{2s}$	(B) $\tan \alpha$ = 2s / R			
	(A) 2/3 sec	(B) 1/6 se	с			(C) $\tan \alpha = \frac{2R}{s}$	(D) $\tan \alpha = \frac{s}{2R}$			
5.	(C) 1/2 sec(D) 3/2 secA particle of mass m begins to slide down a fixed smooth sphere from the top. What is its tangential acceleration when it breaks off the					A mass of M kg is so string. The horizonta displace it until the 45° with the initial ve	uspended by a weightless al force that is required to string makes an angle of ertical direction is			
	sphere ?					(A) Mg ($\sqrt{2}$ +1)	(B) Mg $\sqrt{2}$			
	(A) $\frac{2g}{3}$ (B) $\frac{\sqrt{5}g}{3}$	(C) g	(D) <u>g</u>			(C) $\frac{\text{Mg}}{\sqrt{2}}$	(D) Mg ($\sqrt{2} - 1$)			
							PG #1			

10.	A particle is moving in a circle (A) The resultant force on the particle must be	15.	A particle is moving with constant angular acceleration (α) in a circular path of		
	(a) The resultant force may be towards the centre.(B) The resultant force may be towards the centre.(C) The direction of the angular acceleration and		radius $\sqrt{3}$ m. At t = 0, it was at rest and at t = 1		
			sec, the magnitude of its acceleration becomes		
			$\sqrt{6}$ m/s ² , then α is :		
	the angular velocity must be the same.		(A) 2 rad/s ²	(B) $\sqrt{3}$ rad/s ²	
	(D) The cross product of the tangential acceleration and the angular velocity will be		(C) $\sqrt{2}$ rad/s ²	(D) 1 rad/s ²	
11.	zero. A stone tied to the end of a string of 1 m long is whirled in a horizontal circle with a constan speed. If the stone makes 22 revolutions in 44 s, what is the magnitude and direction or		A point on the periphery of rotating disc has its acceleration vector making on angle 30° with velocity vector then the ration of magnitude of centripetal acceleration to tangential acceleration is - (A) sin30° (B) cos 30°		
	acceleration of the stone ?		(C) tan 30°	(D) None of these	
	(A) $\frac{\pi^2}{4}$ ms ⁻² and direction along the radius towards the centre (B) π^2 ms ⁻² and direction along the radius away from centre		17. A particle is projected horizontaly with speed 10m/s from a certain point above ground. Find the tangential acceleration of particle at t = 2 sec. (Take g = 10 m/s ²). 10 25		
	(C) π^2 ms ² and direction along the radius towards		(A) $\overline{\sqrt{5}}$	(B) <u>√5</u>	
	the centre (D) π^2 ms ² and direction along the tangent to the		(C) 4 √5	(D) 10 √5	
12.	circle A particle moves in a circle of radius 5 cm with constant speed and time period $0.2 \pi s$. The acceleraiton of the particle is : (A) 15 m/s ² (B) 25 m/s ² (C) 36 m/s ² (D) 5 m/s ² A car of mass 1000 kg negotiates a banked aurus of radius 00 m on a friction lass road. If	18.	A particle is tied to one string and is moving in end of string is fixed complete motion in cir resistance is negligibl particle is directed tow (B) Total mechanical e earth remains constar (C) Tension in the strin (D) Acceleration of the	end of a light inextensible a vertical circle, the other at the centre. Then for rcle, which is correct . (air e) (A)Acceleration of the wards the centre. energy of the particle and nt ng remains constant particle remains constant	
	the banking angle is 45° the speed of the car		· · · · · · · · · · · · · · · · · · ·		
	is : (A) 20 ms^{-1} (B) 30 ms^{-1} (C) 5 ms^{-1} (D) 10 ms^{-1}	19.	The magnitude of displacement of a particle moving in a circle of radius a with constant angular speed ω varies with time t as -		
			(A) 2a sinωt	(B) $2a \sin \frac{\omega r}{2}$	
14.	Statement-1 : To move a body uniformly in a circular path, an external agent has to apply a force.		(C) 2a cosot	(D) $2a \cos \frac{\omega t}{2}$	
	 Statement- 2 : To more a body uniformly in a circular path, an external agent has to do work. (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1. (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1. (C) Statement-1 is true, statement-2 is false. (D) Statement-1 is false, statement-2 is true. 		 Which of the following correctly describes the centripetal acceleration vector for a particle moving in a circular path ? (A) Constant and always perpendicular to the velocity vector for the particle (B) Constant and always parallel to the velocity vector for the particle (C) Of constant magnitude and always perpendicular to the velocity for the particle (D) Of constant magnitude and always parallel to the velocity vector for the particle 		

(SECTION-B)

21. With what angular velocity ω (in rad/s) should we rotate the disc so that a mass hanging on to the periphery by a thread of length l = 35/24 m is deviated from the vertical by an angle $\alpha = 37^{\circ}$ in steady state(Fig.)? Radius of the disc R = 1m.

22. The particle begins to move in a circle with constant tangential acceleration. Find the angle α between the velocity and acceleration after the first revolution. The initial angular velocity of

the particle is zero. Fill $\frac{\tan \alpha}{\pi}$ in OMR sheet.

- 23. A coin placed on a rotating turntable just slips if it is placed at a distance of 4 cm from the centre. If the angular velocity of the turntable is doubled , it will just slip at a distance of
- 24. A stone of mass 0.5 kg tied with a string of length 1 metre is moving in a circular path with a speed of 4 m/sec. The tension acting on the string in newton is -
- **25.** A rod AB of length 2m is hinged at point A and it's other and B is attached to a platform on which a block of mass m is kept. Rod rotates about point A maintaining angle $\theta = 30^{\circ}$ with the vertical in such a way that platform remains horizontal and revolves on the horizontal circular path. If the coefficient of static friction between the block and platform is $\mu = 0.1$ then find the maximum angular velocity in rad/s of rod so that block does not slip on the platform. (g = 10 m/ s²)

26. In one second a particle moves with constant speed from point A to point B along the circular track of radius 1.0 m as shown in the figure. What is the average acceleration of the particle during this motion. [Particle is moving from A to B in clockwise direction.]

- 27. Sunset is defined as the instant that the top of the sun disappears below the horizon. How long is it from the time when the bottom of the sun hits the horizon until the instant of sunset assuming that you are standing on the equator on March 21. Call this time t_{sunset} and find it in seconds? Take diameter of Sun = 14 × 10⁸ m & sun-earth distance = 1.5 × 10¹¹ m.
- **28.** The particle begins to move in a circle with constant tangential acceleration. Find the angle α between the velocity and acceleration after the first revolution. The initial angular velocity of

the particle is zero. Fill $\frac{\tan \alpha}{\pi}$ in OMR sheet.

29. In the figure shown, a lift goes downward with a constant retardation. An observer in the lift observes a conical pendulum, revolving in a horizontal circle, with time period 2s. The distance between the centre of circle and the point of suspension is 2.0 m. Find the retardation of the lift (in m/s²).

[use : π^2 = 10 and g = 10 m/s²]

30. A rock is launched upward at 45°. A bee moves along the trajectory of the rock at a constant speed equal to the initial speed of the rock. What is the magnitude of acceleration (in m/s²) of the bee at the top point of the trajectory? For the rock, neglect the air resistance.

JEE CHAPTERWISE TEST