NEET ANSWER KEY & SOLUTIONS

CLASS :- 11th PAPER CODE :- CWT-6

SOLUTIONS SECTION-A 1. (A) Sol. At equilibrium all properties solution (i.e. chemical composition of eq. mixture) becomes constant. **2.** (D) **Sol.** At equilibrium rates of backward and forward reactions become equal. **3.** (A) **4.** (B) **Sol.** Molar conc. = $\frac{\text{no. of molar (mole)}}{\text{no. (mol)}}$ volume (<mark>in l itr</mark>e) $=\frac{869}{338}$ $\frac{300}{329}$ × 2 = 1.5 mol/litre **5.** (B) **Sol.** Forward reaction rate (r_f) [A] [B] = K₁ [A] [B] Backward reaction rate $(r_f) = K_b$ [C] [D] = $\mathsf{K}\mathstrut_{_{2}}$ [C] [D] At equilibrium, $r_{\scriptscriptstyle \rm f}$ = $r_{\scriptscriptstyle \rm b}$ K_1 [A] [B] = K₂ [C] [D] The concentration of reactents & products at equilibrium are related by $K = \frac{14}{16}$ 2 K $\frac{K_1}{K_2} = \frac{[C] \quad [D]}{[A] \quad [B]}$ [A] [B] \therefore K(K_c) = $\frac{K_1}{K}$ 2 K Sol. + $O₂$ $\mathsf{K}_{_\mathsf{p}}$ = P K' p = **8.** (A) **Sol.** K₁ $K_{2} =$ **9.** (C) only. **10.** (D) **11.** (C)

6. (C)

Sol. $K_c = \frac{[Z]^2}{[Y]^2}$ 2 Γ V V V V V [Z] $[X]^2$ [Y]

SUBJECT :- CHEMISTRY

7. (A)

$$
N_2 + O_2 \underset{P_{N_2} \to P_{O_2}}{\longrightarrow} 2NO
$$
\n
$$
K_p = \frac{P_{N_0}^2}{P_{N_2} \cdot P_{O_2}} \qquad \qquad \dots \text{ (i)}
$$
\n
$$
2NO \underset{P_{N_2} \to P_{O_2}}{\longrightarrow} N_2 + O_2 \qquad \qquad \dots \text{ (ii)}
$$

From equation (i) and (ii), we have

8. (A)
\n**Sol.**
$$
K_1 = \frac{(SO_3)}{(SO_2)(O_2)^{1/2}}
$$

\n $K_2 = \frac{(SO_2)^4 (O_2)^2}{(SO_3)^4} = \frac{1}{(K_1)^4}$
\n $\Rightarrow K_2 = \frac{1}{(K_1)^4}$

Sol. Equilibrium const. is temp. dependent

10. (D)
\n**Sol.** N₂OH_(g)
$$
\implies
$$
 2NO_{2(g)}
\n $\Delta n = 2 - 1 = 1, K_p = K_c$ (given)
\nWe know, K_p = K_c (RT)^{Δn}
\n1 = RT, T = $\frac{1}{.0821}$ = 12.19 K

Sol. for $K_p = K_c$, $\Delta n = 0$ only option (C) with satisfy this condition.

12. (B) **Sol.** For this reaction, $K_c = \frac{[X]^4 - [Y]^6}{[A]^{4} - [B]^{5}}$ ⁴ נם ⁴ $[X]^4$ $[Y]$ $[A]^4$ [B] So the unit of $K_c = \left[\frac{\text{mole}}{\text{litro}}\right]^{(4+6)-(4+5)}$ litre $\big\lceil \mathsf{mole} \big\rceil^{(4+6)-(4+5)}$ $\left[\frac{\text{mose}}{\text{litre}}\right]$ = mole litre–1

13. (A)

- **Sol.** $\text{PCl}_5(g) \xrightarrow{\longrightarrow} \text{PCl}_3(g) + \text{Cl}_2(g)$ t=0 1 0 0 $t=t_{eq}$ 1 – x x x Total moles = $1 + x$ Given $\frac{1-x}{1}$ $1 + x$ = 0.4 $x = \frac{3}{7}$ 7 X_{PCl_3} = 3 7 $1 + \frac{3}{7}$ $= 0.3.$
- **14.** (B) **Sol.** $A + B \rightleftharpoons C + D$ $t = 0$ 4 4 0 0 t = t_{eq} 4 – 2 4 – 2 2 2 $K_c = \frac{2 \times 2}{3 \times 2}$ 2×2 \times \times = 1
- **15.** (A) **Sol.** $2P(g) + Q(g) \implies 3R(g) + S(g)$ $t = 0$ 2 2 0 x/2 $t = \text{teq } 2 - x$ $2 - x/2$ $3/2 x$ x/2 from above, at equilibrium $2 - x < 2 - x/2$ \therefore [P] < [Q] at equilibrium

16. (C)

Sol. $A + B \rightleftharpoons C + D$ Initial 1 1 0 0 At equili. (1 – x) (1 – x) x x $K_c = \frac{[C] [D]}{[A] [B]}$ $\frac{181}{18}$ = 9 $\therefore \frac{X. X}{(1 - x)^2}$ $\frac{x \cdot x}{(1-x)^2} = 9$ or $x^2 = 9 + 9x^2 - 18x$ or $8x^2 - 18x + 9 = 0$ \therefore $x = \frac{3}{2}$ $\frac{0}{2}$ or 3 $\overline{4}$ Hence, among the given options, the

option (C) i.e., 0.75 is correct.

17. (B) **Sol.** $N_2 + 3H_3 \implies 2 NH_3$ $t = 0$ 1 mole 2 mole 0 $t = eq$ 1–x 2–3x 2x = 0.8 x = 0.4 mole of N_{2} = 0.6 mole of $H₂ = 0.8$

18. (C)
\nSol.
$$
K_p = \frac{P'PCl_3 \times P'Cl_2}{P'PCl_5}
$$

\n $= \frac{\frac{b}{(a+b+c)} P \times \frac{c}{(a+b+c)} \times P}{\frac{a}{(a+b+c)} P}$
\n $K_p = \frac{bcP}{a (a+b+c)}$
\n19. (A)
\nSol. $P_{c_2} = 2.80 - (0.80 + 0.40) = 1.60$ atm,
\n $k_p = \frac{P_{c_2}^2}{P_{A_2} \times P_{B_2}^3} = \frac{(1.60)^2}{0.80 \times (0.40)^3} = 50$
\n20. (D)
\nSol. $Q_c = \frac{[C] [D]}{[A] [B]}, \lt K_c$
\n $\therefore Q_c$ with time
\n21. (C)
\nSol. When $Q > K_c$, the reaction will proceed in backward direction to attain equilibrium.
\n22. (B)
\nSol. $N_2 + 3H_2 \implies 2NH_3$, $K_p = 4.28 \times 10^{-5}$
\n $\frac{3^2}{atm^{-2}}$
\nReaction Quotient, $Q_p = \frac{P_{N_Hs_3}^2}{P_{N_p}(PH_2)^3} = \frac{3^2}{1 \times (2)^3} = \frac{9}{8}$
\n $Q_p > K_p$. \therefore Reaction will go Backward.
\n23. (A)
\nSol. $Q = \frac{[C]^3}{[A]^2[B]} = \frac{(3/3)^3}{(2/3)^2(1/3)} = 6.75$

$$
Q \leq K_{_{\rm C}}
$$

The reaction will proceed in forward direction to attain equilibrium.

$$
24. (A)
$$

Sol.
$$
2CO_2 \iff 2CO + O_2
$$

\n $t = 0$ 2 0 0
\n $t = t_{eq.} 2 - 2 \times \frac{40}{100}$ 2 × $\frac{40}{100}$ 100
\nTotal moles at equilibrium = $n_{CO_2} + n_{O_2} + n_{CO_2}$
\n n_{CO}
\n $= 2 - 2 \times \frac{40}{100} + 2 \times \frac{40}{100} + \frac{40}{100} = 2.4$

25. (A) **Sol.** 2NO $\implies N_2 + O_2$ $\alpha = 10\%$ $t = 0$ 4 – .4 .2 .2 3.6 0.2 0.2 $\Delta n = 0$, $K_p = K_c$, $K_c = \frac{(.2/V)^2}{(2.6/V)^2}$ 2 (.2 / V) $\frac{(.2/V)^2}{(3.6/V)^2} = \frac{4}{36 \times 10^{10}}$ 36×36 **26.** (A) **Sol .** $x \propto \sqrt{V}$ or $x \propto \sqrt{16}$ Thus 4 times **27.** (B) **Sol.** $NH₄H_S(s) \implies NH₃(g) + H₂S(g)$ P P $2P = 1.2$ $P = 0.6$ $K_p = P₂ = (0.6)₂ = 0.36 atm₂$ **28.** (A) **Sol.** Gibbs equation $\Delta G = \Delta G^{\circ} - RT \ln K$ at equilibrium $\Delta G = 0$ $-\Delta G^{\circ}$ = RT In K **29.** (B) **Sol.** At equilibrium $\triangle G = 0$ Given $\Delta G^0 = 0$ Gibbs equation $\Delta G = \Delta G^{\circ} - RT \ln K$ $0 = 0 - RTlnK$ \Rightarrow K = e^0 = 1 **30.** (A) **Sol.** From equation it is given T₂ >T₁ \mathcal{L}_{\bullet} 2 1 1 1 T_2 T_1 $\left|\frac{1}{T}-\frac{1}{T}\right|$ $\begin{bmatrix} I_2 & I_1 \end{bmatrix}$ $=\frac{11}{7}$ $\frac{12}{7}$ 1 2 $\mathsf{T}_\mathsf{1} - \mathsf{T}_\mathsf{2}$ T_1 T_2 $\frac{-T_2}{T}$ = negative value **31.** (A) **Sol.** $T \uparrow K_c \uparrow \Rightarrow$ Endothermic **32.** (D) **Sol.** On adding any reactant equilibrium shifts in forward direction, so amount of product increases. **33.** (B) **Sol.** On adding inert gas at constant pressure effect on equilibrium will be similar to as if volume of container has been increased. **34.** (B) **Sol.** For constant volume, reaction quotient (Q) will remain constant. For constant pressure, reaction quotient (Q) will remain constant when $\Delta n_{\rm g}$ = 0. **35.** (D) **Sol.** Since inert gas addition has no effect at

const. volume.

SECTION-B

36. (A) **Sol.** For given reactions \triangle ng = +ve, \triangle H = -ve, high temperature & low pressure favours forward reaction which increases number of moles.

$$
37. (A)
$$

Sol. According to
$$
K_p = \frac{P_{PCl_3 (g)} \times P_{Cl_2 (g)}}{P_{PCl_5 (g)}}
$$

$$
= \frac{(n_{PCl_3 (g))_{eq.} \times (n_{Cl_2 (g))_{eq.}}}}{V \times (n_{PCl_5 (g))_{eq.}}}
$$

and on adding inert gas at constant pressure effect on equilibrium will be similar to as if volume of container has been increased.

38. (B)

Sol. Number of moles will remain unchanged but due to decreased volume pressure will get increased and also the concentrations.

39. (A)

- **40.** (D)
- **Sol.** Solublity of gas is favourable at high pressure and this process is exothermic hence solubility will be more at low temperature.

41. (B)

Sol. For any physical equilibrium on increasing pressure equilibrium shifts in the direction of higher density.

42. (B)

Sol. + $3H_2 \rightleftharpoons 2NH_3$ equilibrium constant = K $[NH₃]^2$

 $K = \frac{[NH_3]^2}{[N_2] [H_2]^3}$ $[N_2]$ $[H_2]^3$ $2N_2 + 6H_2 \rightleftharpoons 4NH_3$ equilibrium constant = K' $K' = \frac{[NH_3]^4}{[N_2]^2 [H_2]^6}$ ${\sf [NH}_{\rm_3}{\sf]}^{\rm 4}$ $\frac{[N_2]^2}{[N_2]^2}$ $[H_2]^6$ = K²

[from equation (1)].

3

43. (D)
\n**Sol.**
$$
2NH_3 \iff N_2 + 3H_2
$$
 $K_1 = \frac{1}{K_1}$
\n $N_2 + O_2 \iff 2NO$ $K_2 = K_2$
\n $3 \times (H_2 + \frac{1}{2}O_2 \iff H_2O)$ $K_3 = (K_3)^3$
\n
\n
\n $2NH_3 + \frac{5}{2}O_2 \iff 2NO + 3H_2O$ $K_4 = \frac{K_2 \times (K_3)^3}{K_1}$

$$
44. \qquad \text{(D)}
$$

Sol. For pure solids & pure liquids, although they have their own active masses but they remain const, during a chemical change.

> K_{c} & K_{p} are equilibrium const. in terms of concentration & partical pressures.

All options are correct.

45. (B)

Sol. $VD_{\text{Minorobs}} = \frac{D}{4 \times (D)}$ $1 \times (n - 1)d$ $VD_{\text{obs}} = 62$, $VD_{\text{TH}^2} = 104.16$, n = 2 $\alpha = 68\%$

46. (B)

\nSol. (A) 2NH₃(g)
$$
\Longrightarrow
$$
 N₂(g) + 3H₂(g)

\nΔH = +ve

\n\n- on P increase \Rightarrow backward on T increase \Rightarrow forward on V increase \Rightarrow forward on addition of \Rightarrow and \Rightarrow P ⇒ V will increase = forward
\n- (B) 2HI(g) \Longrightarrow H₂(g) + I₂(g)
\n- ΔH = +ve
\n- on P increase or V increase \Rightarrow no effect on T increase \Rightarrow forward
\n- (C) $2(\text{CH}_3\text{COOH})_{(g)}$
\n- (CH₃COOH)₂(g) ΔH = -ve
\n- on P increase \Rightarrow forward on T increase \Rightarrow backward on V increase \Rightarrow backward on introduction of \Rightarrow and \Rightarrow backward on introduction of \Rightarrow the constant pressure \Rightarrow volume will increase \Rightarrow backward
\n
\n47. (B)

\nSol. By definitions.

\n48. (D)

\nSol. Value of equilibrium constant is not dependent on concentration of any species.

49. (A)

50. (A)