JEE MAIN : CHAPTER WISE TEST PAPER-6							
	CT :- CHEMISTRY				DATE NAME		
CHAPT	FER :- CHEMICAL EQUI	LIBRIUM			SECTION		
		(SECT	ION	-A)			
1.	 Chemical equilibrium because – (A) The equilibrium in r (B) Conc. of reactants same at equilibrium (C) Conc. of reactance (C) Conc. of reactance (D) Both forward and be at all times with same 	is dynamic in nature maintained quickly s and products become n nts and products are ent ackward reactions occur ame speed	6.		For the reaction : A(s) \Longrightarrow B(g) + C(g) . What will be the value of natural logarithm of ratio of total pressure at 400K to that at 300K $\left[= \ln \frac{P_{400}}{P_{300}} \right] \text{ if } \Delta H = 16.628 \text{ kJ. (Given : R =} \\ 8.314 \text{J/K-mole)} \\ \text{(A) 5/3 (B) 5/6 (C) 3/5 (D) 6/5} \end{cases}$		
2.	The equilibrium const (s)+CO ₂ (g) \rightleftharpoons ZnO (s (A) $\frac{P_{\infty}}{P_{\infty_2}}$	ant for the reaction Zn (a) + CO (g) is (B) $\frac{[ZnO]}{[Zn]}$	7.		On increasing the temperature, the equilibrium constant of an endothermic reaction increases. It is due to (A) greater increase in the activation energy of forward reaction in comparision to that of backward reaction.		
	(C) $P_{Zn} P_{CO_2}$	$\overline{P_{zn} P_{co_2}}$ (D) $\overline{P_{zno} P_{co_2}}$			(B) Greater decrease in the activation energy of forward reaction in comparision to that of backward reaction.		
3.	The unit of equilibrium $H_2 + I_2 \rightleftharpoons 2HI$ is – (A) Mole ⁻¹ litre (C) Mole litre	constant for the reaction (B) Mole–2 litre (D) None			 (C) Greater increase in rate constant of forward reaction in comparision to that of backward reaction. (D) Increase in rate constant of forward reaction but decrease in rate constant of backward 		
4.	 For the dissociation o → MgO(s) + CO₂(g) io regarding extent of diss (A) As temperature i dissociation decree (B) Extent of dissociation increase if equilible same temperature volume. (C) Extent of dissociation if taken in a larger (D) Extent of dissociation on changing volume 	f MgCO ₃ as MgCO ₃ (s) lentify the correct option sociation of MgCO ₃ s increased, extent of ases. ation at equilibrium will brium is attained at the e in a container of lesser on of MgCO ₃ will increase container. on will remain unchanged he of the container.	8. 9.		reaction. For which of the following reaction $K_P = K_C$. (A) $4Fe(s) + 3O_2(g) \Longrightarrow 2Fe_2O_3(g)$ (B) $P_4(s) + 5O_2(g) \Longrightarrow P_4O_{10}(s)$ (C) $CH_4(g) + 2O_2(g) \Longrightarrow CO_2(g) + 2H_2O(l)$ (D) $3Fe(s) + 4H_2O(g) \Longrightarrow Fe_3O_4(s) + 4H_2(g)$ For the following Equilibria : $H_2O(l) \Longrightarrow H_2O(g) \qquad K_P = P_{H_2O}$ where $P_{H_2O} \longrightarrow$ Vapour pressure of $H_2O(g)$		
5.	Which of the following the solubility of $NH_3(g)$ $NH_3(g) + H_2O(aq) NH_3(g)$ (A) Increase in pressur (B) Addition of water (C) Addition of NaOH (D) Decrease in tempe	factor will not increase in H ₂ O? 4 ⁺ (aq) + OH ⁻ (aq) e rature			By which of the following ways P_{H_2O} can be changed (A) By adding more $H_2O(I)$ (B) By adding more H_2O (g) (C) By changing temperature (D) All of the above		

10.	 Which of the following statements is correct regarding dissociation of gaseous PCl₅ as : PCl_{5(g)} → PCl_{3(g)} + Cl_{2(g)} (A) Increase in pressure at constant temperature increases equilibrium constant. (B) Increase in pressure at constant temperature decreases concentration of PCl₅. (C) Increase in volume at constant temperature increases degree of dissociation of PCl₅. (D) Increase in temperature decreases degree of dissociation. 	16.	 Which one of the following statements is incorrect about chemical equilibrium- (A) Chemical equilibrium can be attained, whether we start with reactants or products. (B) Chemical equilibrium is dynamic in nature. (C) Chemical equilibrium CaCO₃(s) = CaO(s) + CO₂(g) is attained when CaCO₃(s) is heated in an open vessel. (D) At equilibrium concentration of each of the reactants and products become constant.
11.	At a equilibrium pressure of 3.3 atm N_2O_4 undergoes 10% decomposition to NO_2 . At same temperature what will be equilibrium pressure required for 20% dissociation. (A) 3.3 atm (B) 6.6 atm (C) 4 atm (D) 0.8 atm		$A_2(g) + B_2(g) \implies 2AB(g)$ 2 moles of A ₂ was taken in a 2 litre vessel and 2 mole of B ₂ was taken in a 3 litre vessel. Both vessel were then connected. At equilibrium, concentration of AB(g) is 0.7 M. Equilibrium concentrated of A ₂ and B ₂ gases would be (A) 0.07 M, 0.07 M (B) 0.05 M, 0.05 M
12.	For the reaction $H_2O_{(l)} \implies H_2O_{(g)}$, which of the following options is incorrect regarding possible value of vapour pressure at given temperature. (A) 1 atm at 373 K (B) 0.8 atm at 400 K (C) 1 bar at 372.6 K (D) $\frac{1}{2}$ atm at 353 K	18.	(C) 0.08 M, 0.08 M (D) 0.06 M, 0.06 M For the reaction in equilibrium $2NOBr(g) \implies 2NO(g) + Br_2(g)$ if $p_{Br_2} = P/9$ at equilibrium and P is the total pressure. The ratio K _p /P is equal to-
13.	For the reaction : $A(g) + 2B(g) \longrightarrow 4C(g)$; $\Delta H = -ve.$ The favourable condition for the greater yield of C(g) is (A) Increase in pressure of system. (B) Increase in temperature (C) Addition of inert gas at constant volume (D) Addition of inert gas at constant pressure	19.	(A) $\frac{1}{9}$ (B) $\frac{1}{81}$ (C) $\frac{1}{27}$ (D) $\frac{1}{25}$ Consider the following equilibrium $H_2O(g) + CO(g) \Longrightarrow H_2(g) + CO_2(g) K_1 = 2$ FeO(s) + CO(g) \Longrightarrow Fe(s) + CO_2(g) K_2 = 4 Then K for reaction. Fe(s) + H_2O(g) \Longrightarrow FeO(s) + H_2(g) (A) 2 (B) 1 (C) $\frac{1}{2}$ (D) $\sqrt{2}$
14.	Ammonia at a pressure of 10 atm and CO_2 at a pressure of 20 atm are introduced into an evacuated chamber. If K_p for the reaction $NH_2COONH_4(s) \mid 2NH_3(g) + CO_2(g)$ is 2020 atm ³ , the total pressure after a long time is (A) less than 30 atm (B) more than 30 atm (C) equal to 30 atm (D) can't be predicted	20.	For the reaction at equilibrium : $A(g) + 2B(g) \longrightarrow C(g)$ Equilibrium constants as function of temperature are K at 300°C 4 × 10 ⁻⁴ K at 450°C 4.5 × 10 ⁻⁵ K at 600°C 6 × 10 ⁻⁷
15.	Which of the following change at equilibrium will shift reaction in backward direction : $Fe^{3+}(aq) + SCN^{-}(aq) \implies Fe(SCN)^{2+}(aq)$ (A) Addition of water (B) Addition of KOH(aq) [Fe(OH) ₃ is insoluble in water] (C) Addition of NaNO ₃ (s)		 Then (A) Reaction is exothermic. (B) On adding D(g) at constant volume reaction will move towards right. [D(g) is non reactive gas] (C) Yield of reaction will increase on increasing temperature.

(D) (A) and (B) both

PG #2 011-41659551 || 9312712114

(D) Both (A) and (C)

(SECTION-B)

- **21.** Consider the following equilibrium at 300 K. A (g) + 3B (g) + 4C (g) $_{1}$ 2D (g) + 3E (g) The equilibrium was established in a closed rigid container of volume 10 / when A, B and C were taken in a molar ratio of 1 : 3 : 4. If % by volume of product gases is 20% total 100 moles are taken and if value of equilibrium constant K_C is given by a × 10⁵ then calculate **a**.
- 22. For the reaction, $A(g) + 2B(g) C(g) + D(g) K_c = 10^{12}$ If initial moles of A, B, C and D are 0.5, 1, 0.5 and 3.5 moles respectively in one litre vessel. If equilibrium concentration of B is (y × 10⁻⁴ M) then find y.
- **23.** Consider the following equilibria at 300K. $2A(g) + H_2O(g) \Longrightarrow C(g) + 3D(g) \quad K_p = 3 \times 10^{22} \text{ atm}$

The equilibrium was attained in a container by taking A, C and D at partial pressures of 2 atm each along with large amount of liquid water. If vapour pressure of water at 300 K is 38 mm of Hg then calculate partial pressure of A when equilibrium gets established.

[Express your answer in terms of 10⁻¹⁰ atm.]

24. For the reaction : A(g) equilibrium partial pressures of gases A and B is 4 bar and 2 bar, respectively. If the equilibrium mixture is slowly & isothermally compressed to 12 bar, maintaining equilibrium, then the new equilibrium pressure (in bar) of B(g) becomes

(**Take :** $\sqrt{184}$ = 13.5)

25. 4.6 gm of liquid ethanol (C_2H_5OH) is taken in 12 litre container and at 27°C, 40% of ethanol is vaporised till equilibrium. Now if volume of container is halved and system is allowed to attain equilibrium then find pressure developed (**in atm**). [**Assume** volume of liquid ethanol is neligible]

[Given : R = 0.08 atm lit / mole-K] [Give your answer after multiplication by 100] **26.** Consider the following reaction at certain temperature:

 $H_2(g) + Cl_2(g) + 2HCl (g)$

The mixing of 1 mol of H_2 with 4 moles of Cl_2 form x moles of HCl at equilibrium. If we add 5 moles of H_2 at equilibrium then another 2x moles of HCl are produced. Then find K_{eq} for above reaction.

For a reaction whose standard enthalpy change is - 2.070 Kcal/mol at 300 K. At what temperature (in K) the equilibrium constant will become double of the value at 300 K.

[Take : log2 = 0.3, R = 2 Cal mol⁻¹ K⁻¹, ln 10 = 2.3]

28. An equimolar mixture of PCI_3 and CI_2 is taken. Calculate the equilibrium pressure , if 75% of PCI_3 is converted into PCI_5 ?

 $PCI_{5}(g) PCI_{3}(g) + CI_{2}(g)$ K_p = 5 atm

- 29. The pressure over pure solid A is 60 mm of Hg at a certain temperature T and the pressure over pure solid D is 80 mm of Hg at same temperature T. if A and D dissociate as $A(s) \Longrightarrow B(g) + C(g)$ and $D(s) \Longrightarrow B(g) + E(g)$ then the total pressure over a mixture of excess of A(s) and D(s) at same temperature will be
- **30.** K_{p} for the reaction $H_{2}(g) + \frac{1}{2}O_{2}(g) = H_{2}O(I)$ is 8.0 bar^{-3/2} at T Kelvin temperature. If vapour pressure of $H_{2}O$ is 2.0 bar at same temperature then K° for the reaction 2H. (g) + O. (g)

then $\,K_{\rm p}^{\,\rm o}\,$ for the reaction 2H $_2^{}\,(g)$ + O $_2^{}\,(g)$ \Longrightarrow 2H $_2^{}O\,(g)$ is