NEET ANSWER KEY & SOLUTIONS

SUBJECT :- CHEMISTRY

CLASS :- 11 th									PAPER CODE :- CWT-5					
CHAPTER :- THERMODYNAMICS & THERMOCHEMISTRY														
ANSWER KEY														
1.	(C)	2.	(D)	3.	(A)	4.	(D)	5.	(B)	6.	(A)	7.	(B)	
8.	(A)	9.	(A)	10.	(D)	11.	(C)	12.	(D)	13.	(C)	14.	(D)	
15.	(B)	16.	(C)	17.	(A)	18.	(A)	19.	(D)	20.	(C)	21.	(D)	
22.	(C)	23.	(B)	24.	(C)	25.	(B)	26.	(C)	27.	(D)	28.	(D)	
29.	(B)	30.	(C)	31.	(C)	32.	(B)	33.	(B)	34.	(C)	35.	(B)	
36.	(D)	37.	(A)	38.	(C)	39.	(A)	40.	(C)	41.	(A)	42.	(C)	
43.	(C)	44.	(A)	45.	(D)	46.	(A)	47.	(C)	48.	(B)	49.	(D)	
50.	(A)													

	SOLU	TIONS					
	SECTION-A	7.	(B)				
1		Sol.	According to first law of thermodynamics				
Sol	Test tube is open to atmosphere.		"Energy can neither be created nor be				
			destroyed, it can only be converted from				
2.	(D)		one form to another"				
Sol.	The properties of the system value of		Mathematically				
	which is independent of the amount of		$\Delta E \text{ or } \Delta U = q + W$				
	substance present in the system are called		ΔU = change in internal energy				
	intensive properties e.g., viscosity, surface		q = heat absorbed				
	tension temperature, press <mark>ure etc.</mark>		NOTE: Heat absorbed by the system and the				
•			NOTE: Heat absorbed by the system $q = +$				
3. Sol	(A) The fixed quentity of any substance is		Heat given out by the system $\overline{a} = -y_{0}$				
501.	The liked quality of any substance is		Work done on the system $W = + ve$				
	associated with a definite amount of		Work done by the system $W = -ve$				
	energy which depends <mark>upon</mark> chemical						
	nature of the substance a <mark>nd it</mark> s state of	8.	(A)				
	energy. This energy is called Internal	Sol.	We know that $\Delta U = Q + W = 600 + (-300)$				
	energy or intrinic energy(u) u is a state		= 300 J				
	function and increases with increases in		W = -300, because the work done by the				
			system.				
	temprature .	9	(A)				
		Sol.	For isochoric process $\Delta V = 0$ so $q_v = \Delta U$				
4.	(D)	•••	i a heat given to a system under constant				
Sol.	W = +ve because work done on system.		volume is used up in increasing ALL				
	q = 0 because thermally insulated						
	container.	10.	(D)				
E	(P)	Sol.	$\Delta E = 0$, in a cyclic process.				
5. Sol	(D) $(C) = 0 W = 0$						
	$Case (i) \Delta V = 0, VV = 0$	11.	(C)				
	case (II) $P = constant$, $vv = -P(2v_1 - v_1)$	Sol.	The heat exchanged in a chemical				
	= – PV ₁		reaction at the constant temprature and				
			reaction				
6. Sol	(A)						
301.	$A \rightarrow D$, volume is not changing (isochofic)	12.	(D)				
	$B \rightarrow C$ Isobaric	Sol.	In isothermal reversible process ideal gas				
	$C \rightarrow A$ Temperature is constant		has constant temperature and so ΔU = 0				
	(Isothermal)		and $\Delta H = \Delta U = 0$.				

13. (C) Sol. From 1st law of thermodynamics $\Delta U = q + W$ Q = + 800 J $W = -P(V_2 - V_1)$ $= -1 (20 - 10) = -10 \text{ dm}^3 \text{ atm}$ $10 \text{dm}^3 \times 8.314 \text{ J/K} \text{ mol}$ 0.08206 dm³/K mol W = -1013 J∆U = 800 J + (- 1013 J) = - 213 J 14. (D) Sol. ΔH = heat gives so process is isobaric. w = $-P_{ext}$ (ΔV) = -1×2 litre.atm = -202.6 J Hence $q = 202.6 J = \Delta H$. and $\Delta E = q + w$ = 0. 15. (B) Sol. From I law of thermodynamics $\Delta E = Q + W$ where Q = 0 for adiabatic process. 16. (C) 17. (A) $W_{\text{max, iso}} = -2.303 \text{ nRT log} \frac{V_2}{V_1}$ Sol. $= -2.303 \times 1 \times 8.31 \times 310 \times \log$ 25 15 = -1303.73 J (-ve sign shows work of expansion i.e. work done by the system) 18. (A) Sol. Since C to D is a reversible isothermal process W = $-2 \text{ RT In} \frac{P_1}{P_2} = -800 \text{ R} \ell \text{n} 2$ 19. (D) Sol. When a real gas is forced through a porous plug into a region of low pressure, it is found that due to expansion, the gas on the side of low pressure gets cooled. The phenomenon of producing lowering of temperature when a gas is made to

expand adiabatically from a region of high pressure into a region of low pressure is known as Joule-Thomson effect. **20.** (C) **Sol.** On occurrence of

 $NH_4CI (s) \longrightarrow NH_3(g) + HCI (g)$ In above reaction, the disorder increases with the formation of NH_3 and HCI. Therefore entropy increases. (D) $\Delta n_g < 0$ for $3C_2H_2 (g) \longrightarrow C_6H_6 (\ell)$

22. (C)

21.

Sol.

Sol. An entropy (△S) of a reaction is positive if the products are in more random state as compaered to reactants (order of randomness is gas > liquid > solid).

> $NaNO_3 (s) \implies Na^+ (aq) + NO_3^- (aq)$ This process is accompanied by increase in randomness because Na⁺ and NO₃⁻ ions are free to move in solution whereas they are not free to move in solid NaNO₃.

> In (A) product (solid) has lesser entropy as compared to reactants.

In (B) NaCl (solid) has lesser entropy as compared to NaCl (aq) (Na⁺ and Cl⁻).

In (D) both reactants and products are in gaseous state but number of moles of products are decreasing.

23. (B)

Sol. Reaction is endothermic and no. of moles increases on decomposition.

Sol.
$$\Delta S = nC_{p, m} \ln \frac{T_2}{T_1} = 2 \times \frac{5}{2} R \ln \frac{600}{300} = 5 R \ln 2$$

25. (B)
Sol. An irreversible process
$$\Rightarrow$$
 spontaneous process
 \Rightarrow (dS)_{V,E} (change in entropy) = +ve > 0
 \Rightarrow (dG)_{T,P} (change in Gibbs free energy)
 $-ve \Rightarrow < 0$

26. (C)

Sol. ZnO —
$$Zn(s) + \frac{1}{2}O_2(g)$$

27. (D) Sol. $\Delta G = (\Delta H) - T(\Delta S)$ -ve -ve since both are -ve, the reaction would have a $-ve \Delta G$ below a temperature of K (= 569K) 28. (D) Sol. using $\Delta H = \Delta E + \Delta n_{q}RT$ 29. (B) $2C + O_2 \rightarrow 2CO$; $\Delta H = -220$ KJ Sol. This reaction does not represent complete combustion of carbon, hence heat of combustion of carbon will not be equal to 110 kJ . The negative sign of ΔH indicates that this reaction is exothermic. Also, despite being spontaneous reaction, it requires initiation. 30. (C) Sol. Enthalpy of reaction (ΔH) is defined as heat exchanged during any chemical reaction $\Delta H = H_P - H_R$ for exothermic reaction $H_P < H_R$ ΔH is –ve. ÷ 31. (C) $C_2H_2(g) + H_2(g) \longrightarrow C_2H_4(g)$ Sol. $\Delta H = \Delta V + \Delta n_{\alpha}RT$ $= \Delta U + P \Delta V$ $-0.5 = \Delta U + 1.5 (-5) \times \frac{100}{1000}$ $\Delta U = -0.5 + 0.75$ ∆U = 0.25 kJ 32. (B) $\Delta H_{f}^{\circ} (Cl_{2},g) = 0,$ Sol. As ∆H_f° of elements in their standard state is taken to be zero. 33. (B) Sol. Black phosphorus has a highly ploymeric layer type structure. Hence. thremodynamically, it is the most stable form of phosphorus.

34. (C) $C + \frac{1}{2} O_2(g) \longrightarrow CO$; Sol. $\Delta H = -$ 110 kJ mol⁻¹ (i) $C + O_2(g) \longrightarrow CO_2$; $\Delta H = -$ 393 kJ mol⁻¹ (ii) On subtracting eq. (i) from eq. (ii), we get $CO + \frac{1}{2} O_2 \longrightarrow CO_2$; ∆H = 393 $-(-110) = -283 \text{ kJ mol}^{-1}$ 35. (B) Combustion reaction of solid boron Sol. $B(s) + \frac{3}{4} O_2(g) \longrightarrow \frac{1}{2} B_2 O_3(s)$ $\Delta H^{\circ}_{r} = \Delta H^{\circ}_{c} = \frac{1}{2} \Delta H^{\circ}_{f} (B_{2}O_{3}, s) - \Delta H^{\circ}_{f}$ $(B, s) - \frac{3}{4} \Delta H^{\circ}_{f}(O_{2}, g)$ $\Delta H_{f^{\circ}}$ of element in stable state of aggregation is assumed to be zero. $\Delta H^{\circ}C = \frac{1}{2} \Delta H^{\circ}f (B_2O_3, s)$ **SECTION-B** 36. (D) Sol. C (diamond) + $O_2 \longrightarrow CO_2(g)$; $\Delta H = -$ 94.3 kcal/mol C (graphite) + O₂ \longrightarrow CO₂(g) ; Δ H = -97.6 kcal/mol C (diamond) \longrightarrow C (Graphite) $\Delta H = 3.3$ kcal Heat required to convert 12 gram diamond to graphite = 3.3 Heat required to convert 1 g • diamond to graphite = $\frac{3.3}{12}$ = 0.275 37. (A) Calorific value = $\frac{\Delta H}{mol wt}$ Sol. for ethane $(C_2H_6) = -\frac{341}{30} = -11.37$ for ethyne $(C_2H_2) = - = \frac{310}{26} - 11.9$

So, better calorific value is better fuel hence, C_2H_2 .

38. (C) Sol. $CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O$ (ℓ) $\Delta n_g = 1 - 3 = -2$ $\Delta H - \Delta E = \Delta n_g RT = -2 RT$

- **39.** (A)
- **Sol.** Since process is exothermic then heat is evolved due to this temperature of water increase.
- **40.** (C)
- **Sol.** Strong acid and strong base neutralization heat is equal to 13.7 kcal.
- **41.** (A)

$$\Delta H = -13.7 \text{ kcal} \qquad \dots(i)$$

$$CHCl_2COOH \longrightarrow CHCl_2COO^- + H^+$$

$$\Delta H = 0.7 \text{ kcal} \qquad \dots(ii)$$

$$CHCl_2COOH + OH^- \longrightarrow CHCl_2COO^-$$

$$+ H_2O(\ell) \Delta H = ?$$

Adding equation (i) and (ii) $\Delta H = -13$ kcal.

42. (C)

Sol. Enthalpy of neutralization is defined as amount of heat liberated when one mole of a strong acid is completely neutralized by one mole of a strong base. Its value is less in case of weak acid or weak base because small amount of heat is utilized in ionising the weak acid/base.

 Δ H for ionisation of CH₃COOH = Heat of neutralization for CH₃COOH – Heat of neutralization of strong acid

- **43.** (C)
- Sol. $KBr(s) \longrightarrow K^+(g) + Br^-(g) \implies \Delta H = Lattice energy$ (By definition)
- 44. (A) Sol. $\Delta H^{\circ}_{f}(\text{LiCl}) = -q = \Delta H_{\text{sub}}$ (Li) + $\frac{1}{2}\Delta H_{\text{diss}}(\text{Cl}_{2}) + \Delta H_{\text{IP}}(\text{Li}) + \Delta H_{\text{EA}}(\text{Cl}) +$ $\Delta H_{\text{L.E.}}$ $-400 = 160 + \frac{244}{2} + 520 - 365 + \Delta H_{\text{L.E.}}$ $\Delta H_{\text{L.E.}} = -400 - 437 = -837 \text{ kJ mole}^{-1}$

45. (D)
Sol.
$$CH_4 \longrightarrow C + 4H$$

 $\Delta H = 320 = \Delta H_{C-H}; \Delta H_{C-H} =$
 $C_2H_6 \longrightarrow 2C + 6H$
 $\Delta H = 600 = \Delta H_{C-C} + 6\Delta H_{C-H}$
 $600 = \Delta H_{C-C} + 6 \times 80$
 $\Delta H_{C-C} = 120$ cal

80

46. (A)
Sol.
$$\frac{1}{2} A - A + \frac{1}{2} B - B \rightarrow AB$$
 $\Delta H = -$
100 KJ/mole
 $\frac{1}{2} x + \frac{1}{2} (0.5x) - x = -100 \Rightarrow$
 $\frac{x}{2} + 0.25x - x = -100$
 $\Rightarrow -0.25 x = -100 \Rightarrow$
 $x = 400$ KJ/mole
Bond enthalpy = 400 kJ/mol.

47. (C)
Sol.
$$CH_2 = CH_2 + H_2 \longrightarrow CH_3 - CH_3$$

 $\Delta H = X_1$

So, Hydrogenation energy of benzene sholud be $3x_1$ ΔH calculated = $3x_1$

So, Resonance energy = $[3x_1 - x_2]$

48. (B)

- Sol. (B) In an isothermal process change in internal energy (ΔE) is zero (as it is a fucntion of temperature). .: According to first law of thermodynamics \therefore q + w = ΔE , hence Q = -W (if ΔE = 0) If a system undergoes a change in which internal energy of the system remains constant (i.e., $\Delta E = 0$), then -W = Q. This means that work done by the system equals the heat absorbed by the system. 49. (D) Sol. (D) If a refrigerator's door is kept open room gets heated as heat energy is released to the surroundings. 50. (A) (A) The properties whose magnitude Sol.
- **Sol.** (A) The properties whose magnitude depends upon the quantity of matter present in the system are called extensive properties.