NEET ANSWER KEY & SOLUTIONS

SUBJECT :- CHEMISTRY

SOLUTIONS

13. (C) **Sol.** From 1st law of thermodynamics $\Delta U = a + W$ $Q = +800 J$ $W = -P (V_2 - V_1)$ $=$ – 1 (20 – 10) = – 10 dm³ atm $=-\frac{10$ dm³ × 8.314 J/K mol 0.08206 dm³ /K mol $W = -1013$ J $\Delta U = 800$ J + (- 1013 J) = - 213 J **14.** (D) **Sol.** $\triangle H$ = heat gives so process is isobaric. $w = -P_{ext} (\Delta V) = -1 \times 2$ litre.atm = -202.6 J Hence $q = 202.6$ J = ΔH . and $\Delta E = q + w$ $= 0.$ **15.** (B) **Sol.** From I law of thermodynamics $\Delta E = Q + W$ where $Q = 0$ for adiabatic process. **16.** (C) **17.** (A) **Sol.** $W_{\text{max, iso}}$ = – 2.303 nRT lo<mark>g $\frac{v_2}{V_1}$ </mark> V V $=$ – 2.303 × 1 × 8.31 × 310 × log 25 15 $= -1303.73$ J (–ve sign shows work of expansion i.e. work done by the system) **18.** (A) **Sol.** Since C to D is a reversible isothermal process W = $-$ 2 RT In $\frac{11}{2}$ 2 P $\frac{11}{P_2}$ = – 800 R ℓ n2 **19.** (D) **Sol.** When a real gas is forced through a porous plug into a region of low pressure, it is found that due to expansion, the gas on the side of low pressure gets cooled. The phenomenon of producing lowering of temperature when a gas is made to expand adiabatically from a region of high

pressure into a region of low pressure is

known as Joule-Thomson effect.

20. (C) **Sol.** On occurrence of NH_4 Cl (s) \longrightarrow NH₃(g) + HCl (g) In above reaction, the disorder increases with the formation of NH $_3$ and HCl. Therefore entropy increases. **21.** (D) **Sol.** Δ n_g < 0 for 3C₂H₂ (g) \longrightarrow C₆H₆ (ℓ) **22.** (C) **Sol.** An entropy (ΔS) of a reaction is positive if the products are in more random state as compaered to reactants (order of randomness is gas > liquid > solid). NaNO $_3$ (s) \Longrightarrow Na $^+$ (aq) + NO $_3^-$ (aq) This process is accompanied by increase in randomness because Na^+ and $\text{NO}_3^$ ions are free to move in solution whereas they are not free to move in solid NaNO_{3} . In (A) product (solid) has lesser entropy as compared to reactants. In (B) NaCl (solid) has lesser entropy as compared to NaCl (aq) (Na⁺ and Cl⁻). In (D) both reactants and products are in gaseous state but number of moles of products are decreasing. **23.** (B) **Sol.** Reaction is endothermic and no. of moles increases on decomposition. $24.$ **Sol.** $\Delta S = nC_{p, m} \ln \frac{r_2}{T_1}$ T $\frac{T_2}{T_1}$ = 2 × $\frac{5}{2}$ R In $\frac{600}{300}$ = 5 R In 2 **25.** (B) **Sol.** An irreversible process \Rightarrow spontaneous process \Rightarrow (dS)_{V, E} (change in entropy) = +ve > 0 \Rightarrow (dG) $_T$ \neq (change in Gibbs free energy) $-ve \Rightarrow 0$

26. (C)

Sol. ZnO
$$
\longrightarrow
$$
 Zn (s) + $\frac{1}{2}$ O₂

HgO → Hg(
$$
\ell
$$
) + $\frac{1}{2}$ O₂ (g)
\n $\Delta H^\circ = + 348.38 \Delta G^\circ = 318.4$
\n $\Delta H^\circ = 90.8 \& \Delta G^\circ = 58.5$
\non comparing ΔG° values, decomposition
\nof HgO is more favorable.

 (g)

27. (D) **Sol.** $\Delta G = (\Delta H) - T(\Delta S)$ \downarrow \downarrow –ve –ve since both are –ve, the reaction would have a –ve ΔG below a temperature of K (= 569K) **28.** (D) **Sol.** using $\Delta H = \Delta E + \Delta n_{\Omega} RT$ **29.** (B) **Sol.** $2C + O_2 \rightarrow 2CO$; $\Delta H = -220$ KJ This reaction does not represent complete combustion of carbon, hence heat of combustion of carbon will not be equal to 110 kJ . The negative sign of ΔH indicates that this reaction is exothermic. Also, despite being spontaneous reaction, it requires initiation. **30.** (C) **Sol.** Enthalpy of reaction (AH) is defined as heat exchanged during any chemical reaction $\Delta H = H_P - H_R$ for exothermic reaction $H_P < H_R$ \therefore AH is $-ve$. **31.** (C) **Sol.** $C_2H_2(g) + H_2(g) \longrightarrow C_2H_4(g)$ $\Delta H = \Delta V + \Delta n_{q}RT$ $= \Delta U + P \Delta V$ $-0.5 = \Delta U + 1.5 (-5) \times \frac{100}{1000}$ $\Delta U = -0.5 + 0.75$ $\Delta U = 0.25$ kJ **32.** (B) **Sol.** ΔH_f° (Cl₂,g) = 0, As ΔH_f As ΔH_f° of elements in their standard state is taken to be zero. **33.** (B) **Sol.** Black phosphorus has a highly ploymeric layer type structure. Hence, thremodynamically, it is the most stable form of phosphorus.

34. (C) **Sol.** $C + \frac{1}{2} O_2(g) \longrightarrow CO$; $\Delta H = -$ 110 kJ mol⁻¹ (i) $C + O₂(g) \longrightarrow CO₂$ ΔH = – 393 kJ mol⁻¹ (ii) On subtracting eq. (i) from eq. (ii), we get $\text{CO} + \frac{1}{2}$ O₂ \longrightarrow CO₂ $\Delta H = 393$ $- (-110) = -283$ kJ mol⁻¹ **35.** (B) **Sol.** Combustion reaction of solid boron B(s) + $\frac{3}{4}$ O₂(g) \longrightarrow $\frac{1}{2}$ $\frac{1}{2}$ B₂O₃ (s) ΔH° _r = ΔH° _C = $\frac{1}{2}$ $\frac{1}{2}$ ΔH° f (B₂O₃, s) – ΔH° f $(B, s) - \frac{3}{4}$ $\frac{8}{4}$ ΔH° _f (O₂, g) $\Delta H_{\text{f}}^{\circ}$ of element in stable state of aggregation is assumed to be zero. ΔH° **C** = $\frac{1}{2}$ $\frac{1}{2}$ ΔH° **f** (B₂O₃, s) **SECTION-B 36.** (D) **Sol.** C (diamond) + O₂ \longrightarrow CO₂(g); $\Delta H = -$ 94.3 kcal/mol C (graphite) + O₂ \longrightarrow CO₂(g) ; $\Delta H = -$ 97.6 kcal/mol C (diamond) \longrightarrow C (Graphite) $AH = 3.3$ kcal Heat required to convert 12 gram diamond to graphite $= 3.3$ \therefore Heat required to convert 1 g diamond to graphite = $\frac{3.3}{12}$ = 0.275 **37.** (A) **Sol.** Calorific value = $\frac{\Delta H}{\text{mol. wt}}$ Δ for ethane (C₂H₆) = $-\frac{341}{30}$ $\frac{341}{30}$ = -11.37

> $\frac{218}{26}$ – 11.9 So, better calorific value is better fuel hence, C₂H₂.

for ethyne (C₂H₂) = $-$ = $\frac{310}{26}$

38. (C) **Sol.** $CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O$ (ℓ) Δ n_g = 1 – 3 = – 2 $\Delta H - \Delta E = \Delta n_{q}RT = -2 RT$

- **39.** (A)
- **Sol.** Since process is exothermic then heat is evolved due to this temperature of water increase.
- **40.** (C)
- **Sol.** Strong acid and strong base neutralization heat is equal to - 13.7 kcal.
- **41.** (A)
- **Sol.** $H^+ + OH^- + H_2O(\ell)$

$$
\Delta H = -13.7 \text{ kcal} \quad ...(i)
$$
\n
$$
\text{CHCl}_2\text{COOH} \longrightarrow \text{CHCl}_2\text{COO}^- + H^+
$$
\n
$$
\Delta H = 0.7 \text{ kcal} \quad ...(ii)
$$
\n
$$
\text{CHCl}_2\text{COOH} + \text{OH}^- \longrightarrow \text{CHCl}_2\text{COO}^-
$$
\n
$$
+ H_2\text{O}(\ell) \Delta H = ?
$$

Adding equation (i) and (ii) $\Delta H = -13$ kcal.

- **42.** (C)
- Sol. Enthalpy of neutralization is defined as amount of heat liberated when one mole of a strong acid is completely neutralized by one mole of a strong base. Its value is less in case of weak acid or weak base because small amount of heat is utilized in ionising the weak acid/base.

 ΔH for ionisation of CH₃COOH = Heat of neutralization for CH₃COOH - Heat of neutralization of strong acid

$$
= -50.6 - (-55.9) \text{ kJ} / \text{mol}
$$

$$
= +5.3 \text{ kJ} / \text{mol}
$$

- **43.** (C)
- **Sol.** $KBr(s) \longrightarrow K^+(q) + Br^-(q) \implies$ ΔH = Lattice energy (By definition)
- **44.** (A) **Sol.** ΔH° _f (LiCl) = –q = ΔH_{sub} (Li) ¹⁄2ΔH_{diss} (Cl₂) + ΔH_{IP}(Li) + ΔH_{EA}(Cl) + ΔH_{\parallel} \in $-400 = 160 + \frac{244}{2} + 520 - 365 + \Delta H_{L,E}$ ΔH_l $_F$ = –400 – 437 = –837 kJ mole⁻¹

45. (D)
\n**Sol.** CH₄
$$
\longrightarrow
$$
 C + 4H
\n $\Delta H = 320 = \Delta H_{C-H}$; $\Delta H_{C-H} = 80$
\n $C_2H_6 \longrightarrow 2C + 6H$
\n $\Delta H = 600 = \Delta H_{C-C} + 6\Delta H_{C-H}$
\n $600 = \Delta H_{C-C} + 6 \times 80$
\n $\Delta H_{C-C} = 120 \text{ cal}$

46. (A)
\n**Sol.**
$$
\frac{1}{2}
$$
 A – A + $\frac{1}{2}$ B – B → AB $\Delta H =$ –
\n100 KJ/mole
\n $\frac{1}{2}$ x + $\frac{1}{2}$ (0.5x) – x = –100 \Rightarrow
\n $\frac{x}{2}$ + 0.25x – x = –100
\n \Rightarrow –0.25 x = –100 \Rightarrow
\nx = 400 KJ/mole
\nBond enthalpy = 400 kJ/mol.

47. (C)
\n**Sol.**
$$
CH_2 = CH_2 + H_2
$$
 $\rightarrow CH_3-CH_3$
\n $\Delta H = X_1$

So, Hydrogenation energy of benzene sholud be $3x_1$

 $\triangle H$ calculated = $3x_1$

So, Resonance energy =
$$
[3x_1 - x_2]
$$

48. (B)

- **Sol. (B)** In an isothermal process change in internal energy (ΔE) is zero (as it is a fucntion of temperature). : According to first law of thermodynamics \therefore q + w = ΔE , hence Q = –W (if $\Delta E = 0$) If a system undergoes a change in which internal energy of the system remains constant (i.e., $\Delta E = 0$), then $-W = Q$. This means that work done by the system equals the heat absorbed by the system. **49.** (D) **Sol. (D)** If a refrigerator's door is kept open room gets heated as heat energy is released to the surroundings. **50.** (A)
- **Sol. (A)** The properties whose magnitude depends upon the quantity of matter present in the system are called extensive properties.