	NEET : CHAPTE	ER WIS	E TEST-5	
SUBJECT :- CHEMISTRY CLASS :- 11 th			DATE	
		NAME		
CHAPTER :- THERMODYNAMICS & THERMOCHEMISTRY			SECTION	
	(SECT	ION-A)		
1.	Warming ammonium chloride with sodium hydroxide in a test tube is an example of : (A) Closed system (B) Isolated system (C) Open system	7.	The first law of represented by the eq (A) $\Delta E = q - W$ (C) W = q + ΔE	thermodynamics is uation : (B) $\Delta E = q + W$ (D) q = W + ΔE
2.	 (D) None of these Which of the following is an intensive property ? (A) Temperature (B) Viscosity (C) Surface tension (D) All of these 	8.	A system absorb 600 equivalent to 300J o The change in internal (A) 300 J (C) 500 J)J of heat and work on its surroundings. I energy is (B) 400 J (D) 600 J
3.	The internal energy of a substance : (A) increases with increase in temprature (B) decreases with increase in temprature (C) remains constant (D) calculated by E = mc ²	9.	internal energy is (A) Equal to the heat a (B) Equal to the heat a (C) Equal to the work a (D) Equal to the sum a and work done	absorbed absorbed evolved done of the heat absorbed
4.	In a laboratory, liquid in a thermally insulated container is stirred for one hr, by a mechanical linkage to a in surrounding, for this process : (A) W < 0; q = 0 (B) W < 0; q > 0 (C) W < 0; q > 0 (D) W > 0; q = 0	10.	The internal energy system goes from s kJ/mol. If the system a reversible path and an irreversible path, w change in internal ener (A) 40 kJ (C) < 40 kJ	 change when a state A to B is 40 goes from A to B by returns to state A by /hat would be the net ergy ? (B) > 40 kJ (D) Zero
5.	A thermodynamic system goes from states (i) P_1 , V to $2P_1$, V (ii) P, V_1 to P, $2V_1$. Then work done in the two cases is (A) Zero, Zero (B) Zero, $-PV_1$ (C) $-PV_1$, Zero (D) $-PV_1$, $-P_1V_1$	11.	Heat exchanged in a the constant temprate known as : (A) Internal energy (C) enthalpy	chemical reaction at ure and pressure is (B) entropy (D) free energy
6.	Five moles of a gas is put through a series of changes as shown graphicallay in a cyclic process the A \rightarrow B, B \rightarrow C and C \rightarrow A respectively are	12.	For the isothermal ex gas (A) U and H increases (B) U increases but H (C) H increases but U (D) U and H are unalte	(pansion of an ideal decreases decreases ered
	(A) Isochoric, Isobaric, Isothermal (B) Isobaric, Isochoric, Isothermal (C) Isothermal, Isobaric, Isochoric	13.	A gas expands isof constant external pres volume of 10- dm ³ to It absorbs 800 J of the surroundings. The Δ U (A) – 312 J	thermally against a soure of 1 atm from a a volume of 20 dm ³ . ermal energy from its is : (B) + 123 J

(D) Isochoric, Isothermal, Isobaric

(A) – 312 J	(B) + 123 J
(C) – 213 J	(D) + 231 J

- 14. A vessel contains 100 litres of a liquid X. Heat is supplied to the liquid in such a fashion that, Heat given = change in enthalpy. The volume of the liquid increases by 2 litres. If the external pressure is one atm, and 202.6 Joules of heat were supplied then, [U - total internal energy] (A) $\Delta U = 0$, $\Delta H = 0$ (B) $\Delta U = + 202.6 J$, $\Delta H = + 202.6 J$ (C) $\Delta U = - 202.6 J$, $\Delta H = - 202.6 J$ (D) $\Delta U = 0$, $\Delta H = + 202.6 J$
- 15. The work done in adiabatic process on ideal gas by a constant external pressure would be equal to :
 (A) Zero
 (B) ΔE
 (C) ΔH
 (D) ΔG
- 16. An ideal gas filled at pressure of 2 atm and temp of 300 K, in a balloon is kept in vacuum with in a large insulated container wall of balloon is punchtured then container temperature :

(A) Decreases	(B) Increases
(C) Remain constant	(D) Unpredictable

- 17. If 1 mole of an ideal gas expands isothermally at 37°C from 15 litres to 25 litres, the maximum work (aproximate) obtained is :
 (A) 1303.73 J
 (B) 1603.26 J
 (C) 1235.30 J
 (D) 1396.26 J
- **18.** Two moles of Helium gas undergo a reversible cyclic process as showin in figure. Assuming gas to be ideal. What is the work for the process C to D?

- (C) +200Rℓn2 (D) –600Rℓn2
- **19.** The temperature of the system decreases in an
 - (A) Adiabatic compression
 - (B) Isothermal compression
 - (C) Isothermal expansion
 - (D) Adiabatic expansion

- 20. NH₄ CI (s) → NH₃ (g) + HCI (g) when the above reaction occurs, the entropy (A) remains same
 (B) decrease
 (C) increases
 (D) none of the above
- 21. Which of the following reactions is associated with negative change in entropy? (A) $2SO_3(g) \longrightarrow 2SO_2(g) + O_2(g)$ (B) $C_2H_6(g) \longrightarrow C_2H_4(g) + H_2(g)$ (C) 2C (s, graphite) + $O_2(g) \longrightarrow 2CO(g)$ (D) $3C_2H_2(g) \longrightarrow C_6H_6(\ell)$
- 22. Which one of the following has △S° greater than zero ? (A) CaO (s) + CO₂ (g) \rightleftharpoons CaCO₃ (s) (B) NaCl (aq) \rightleftharpoons NaCl (s) (C) NaNO₃ (s) \rightleftharpoons Na+ (aq) + NO₃⁻(aq) (D) N₂ (g) + 3H₂ (g) \rightleftharpoons 2NH₃ (g)
- **23.** For the gas phase decomposition, PCI₅
 - (g) $\stackrel{\Delta}{\longrightarrow} PCl_3(g) + Cl_2(g)$: (A) $\Delta H < 0, \Delta S < 0$ (B) $\Delta H > 0, \Delta S > 0$ (C) $\Delta H > 0, \Delta S < 0$ (D) $\Delta H < 0, \Delta S > 0$
- 24. When two mole of an ideal gas $\left(C_{p,m} = \frac{5}{2}R\right)$ heated from 300 K to 600 K at constant pressure. The change in entropy of gas (ΔS) is :
 - (A) $\frac{3}{2}$ R ln 2 (B) $-\frac{3}{2}$ R ln 2 (C) 5R ln 2 (D) $\frac{5}{2}$ R ln 2

25. In an irreversible process taking place at constant T and P and in which only pressure-volume work is being done, the change in Gibbs free energy (dG) and change in entropy (dS), satisfy the criteria : (A) (dS)_V, E < 0, (dG)_T, P < 0</p>

- (B) $(dS)_V = 0, (dG)_T = 0$
- (C) $(dS)_{V, E} = 0, (dG)_{T, P} = 0$
- (D) $(dS)_{V, E} = 0, (dG)_{T, P} > 0$

26. Consider the $\Delta G^{\circ}{}_{f}$ and $\Delta H^{\circ}{}_{f}$ (kJ/mol) for the following oxides. Which oxide can be most easily decomposed to form the metal and oxygen gas? (A) ZnO ($\Delta G^{\circ} = -318.4$, $\Delta H^{\circ} = -348.3$) (B) Cu₂O (Δ G° = -146.0, Δ H° = -168.8) (C) HgO ($\Delta G^{\circ} = -58.5$, $\Delta H^{\circ} = -90.8$) (D) PbO ($\Delta G^{\circ} = -187.9$, $\Delta H^{\circ} = -217.3$) 27. A reaction has $\Delta H = -33$ kJ and $\Delta S = -58$ J/K. This reaction would be : (A) spontaneous at all temperatures (B) non-spontaneous at all temperatures spontaneous (C) above а certain temperature (D) spontaneous below а certain temperature For which of the following change $\Delta H \neq \Delta E$? 28. (A) $H_2(g) + I_2(g) \longrightarrow 2HI(g)$ (B) $HCl(aq) + NaOH(aq) \longrightarrow NaCl(aq)$ + H₂O(*l*) (C) $C(s) + O_2(g) \longrightarrow CO_2(g)$ (D) $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$ 29. $2C + O_2 \rightarrow 2CO; \quad \Delta H = -220$ kJ Which of the following statement is correct for this reaction (A) Reaction is endothermic (B) Reaction is exothermic (C) Reaction needs no initiation (D) All of these are correct 30. In the exothermic reaction the enthalpy of reaction is always : (A) zero (B) positive (D) none of these (C) negative 31. The enthalpy change for the reaction of 5 liter of ethylene with 5 liter of H₂ gas at 1.5 atm pressure is $\Delta H = -0.5$ kJ. The value of ΔU will be : (1 atm Lt = 100 J) (A) – 1.25 kJ (B) + 1.25 kJ (D) - 0.25 kJ (C) 0.25 kJ 32. The species which by definition has zero standard molar enthalpy of formation at 298 K is : (A) $Br_{2}(g)$ (B) Cl₂(g) (C) $H_2O(g)$ (D) CH₄(g)

33. Thremodynamically, most stable form of phosphorus is :(A) Red(B) Black

(C) White (D) Yellow

34. The heat of formation of CO(g) and $CO_2(g)$ are $\Delta H = -110$ and $\Delta H = -393$ kJ mol⁻¹ respectively. What is the heat of reaction (ΔH) (in kJ mol⁻¹) for the following reaction ?

$$\begin{array}{c} \text{CO}(g) + \frac{1}{2} & \text{O}_2(g) \longrightarrow \text{CO}_2(g) \\ (A) - 504 & (B) - 142.5 \\ (C) - 283 & (D) & 504 \end{array}$$

35. The standard heat of combustion of solid boron is equal to : (A) $\Delta H^{\circ}_{f} (B_2O_3)$ (B) 1/2 $\Delta H^{\circ}_{f} (B_2O_3)$ (C) 2 $\Delta H^{\circ}_{f} (B_2O_3)$

(D) $1/3 \Delta H^{\circ}_{f} (B_{2}O_{3})$

(SECTION-B)

36.	For the following re	action,
	C (diamond) + O ₂	→ CO ₂ (g) ; ∆H =
	–94.3 kcal/mol	
	C (graphite) + O ₂ -	→ CO ₂ (g) ; ∆H = -
	97.6 kcal/mol	
	The heat required	to change 1 g of C
	$(diamond) \longrightarrow C$	c (graphite) is
	(A) 1.59 kcal	(B) 0.1375 kcal
	(C) 0.55 kcal	(D) 0.275 kcal

37. The values of heat of combustion of ethane (C_2H_6) and ethyne (C_2H_2) are – 341 and – 310 Kcal respectively. Then which of the following is better fuel on mass basis : (A) C_2H_2 (B) C_2H_6

$(A) C_2 H_2$	(B) C2H6
(C) Both (A) & (B)	(D) None of these

- **38.** The difference between ΔH and ΔE on a
molar basis for the combustion of Methane
gas at T K (kelvin) would be :
(A) zero
(B) -RT
(C) -2RT
(D) -3RT
- 39. The enthalpy of solution of NaOH (s) in water is 41.6 kJ/mole when NaOH is dissolved in water then the temperature of water :
 (A) Increase
 (B) Decrease

(C) Does not change (D) Fluctuates

PG #3

40.	The enthalpy of neutralization of which of the following acid & base is nearly – 13.6	46.	AB, A_2 and B_2 are diatomic molecules. If the bond enthalpies of A_2 , AB & B_2 are in
	kcal. (A) HCN and NaOH		the ratio 1 : 1 : 0.5 and enthalpy of formation of AB from A_2 and B_2 is – 100
	(B) CH ₃ COOH and NH ₄ OH (C) HCI and KOH		kJ/mol ^{-1} . What is the bond enthalpy of A ₂ .
	(D) HCl and NH ₄ OH		(Å) 400 kJ/mol (B) 200 kJ/mol (C) 100 kJ/mol (D) 300 kJ/mol
41.	If heat of dissociation of CHCI2COOH is	47.	Heat of hydrogenation of ethene is x_1 and
	0.7 kcal/mole then ΔH for the reaction :		that of benzene is x2. Hence resonance
	CHCl ₂ COOH + KOH \longrightarrow CHCl ₂ COOK + H ₂ O		energy is - (A) $x_1 - x_2$ (B) $x_1 + x_2$
	(A) – 13 kcal (B) + 13 kcal (C) – 14.4 kcal (D) – 13.7 kcal	40	(C) $3x_1 - x_2$ (D) $x_1 - 3x_2$
42.	Enthalpy of neutralisation of CH ₃ COOH by	48.	 A : For an isothermal reversible process Q –w i.e. work done by the system equals the heat absorbed by the system.
	NaOH is – 50.6 kJ/mol and the heat of neutralisation of a strong acid with NaOH		R : Enthalpy change (Δ H) is zero for isothermal process.
	is – 55.9 kJ/mol. The value of ΔH for the ionisation of CH ₃ COOH is :		(A) Assertion is true, Reason is true and Reason is correct explanation for Assertion.
	(A) 3.5 kJ / mol (C) 5.3 kJ / mol (D) 6.4 kJ / mol		(B) Assertion is true, Reason is true and Reason is not correct explanation for Assertion
43.	For which one of the following reaction		 (C) Assertion is true, Reason is false. (D) Assertion is false, Reason is true.
	reaction corresponds to Lattice energy of KBr ?	49	(A) A (B) B (C) C (D) D A : If a refrigerator's door is kent open
	(A) KBr(s) —→ K(s) + ½Br <mark>₂(g)</mark>	40.	room gets cooled.
	(B) KBr(g) \longrightarrow K(g) + Br(g)		R : Material kept inside the refrigerator
	(C) KBr(s) \longrightarrow K ⁺ (g) + Br ⁻ (g)		(A) Assertion is true, Reason is true and
	(D) KBr(g) \longrightarrow K ' (g) + Br ⁻ (g)		Reason is correct explanation for Assertion.
44.	Calculate the lattice energy for the reaction		(B) Assertion is true, Reason is true and Reason is not correct explanation for
	$Li^+(g) + Cl^-(g) \longrightarrow LiCl(s)$		 (C) Assertion is true, Reason is false. (D) Assertion is false, Reason is true.
	given that ΔH_{sub} (Li) = 160; ΔH_{diss} (Cl ₂) = 244		(A) A (B) B (C) C (D) D
	; IP(Li) = 520 ;	50.	A : Internal energy is an extensive
	E _A (Cl) = –365 and Δ H _f (LiCl) = – 400 (all		property. R · Internal energy depends upon the
	in kJ mole ⁻¹)		amount of the system.
	(A) -837 (B) -959 (C) -1567 (D) -37		(A) Assertion is true, Reason is true and Reason is correct explanation for
45.	If enthalpy of dissociation of CH_4 (g) and		(B) Assertion is true, Reason is true and
	$C_2H_6~~(g)$ into gaseous atoms are 320 and		Reason is not correct explanation for
	600 calories respectively then bond		Assertion. (C) Assertion is true. Reason is false
	energy of C–C bond is : (A) 80 cal (B) 40 cal		(D) Assertion is false, Reason is true.
	(C) 60 cal (D) 120 cal		(A) A (B) B (C) C (D) D