		VOL TEOT F
JEE MAIN :	CHAPTER W	VISE 1 ES1-5

JEE MAIN : CHAPTER WISE TEST-5 SUBJECT :- MATHEMATICS DATE					
CLASS :- 11 th			NAME		
CHAP	TER :- SEQUENCE & S			SECTION	
1.		eries 3.8 + 6.11 +	ION A) 8.	and on squaring the sum will be y , then this series is	terms of a G.P. is x e each term of it, the the common ratio of
2.	If $\log_3 2$, $\log_3(2^x - 5)$ at in A.P., then x is equa (A) 1, $\frac{1}{2}$ (C) 1, $\frac{3}{2}$	(=)	9.		(B) $\frac{x^2 + y^2}{x^2 - y^2}$ (D) $\frac{x^2 + y}{x^2 - y}$ finity of a G.P., whose the sum of the first <i>n</i>
3.	If a_m denotes the m^{th} t $a_m =$ (A) $\frac{2}{a_{m+k} + a_{m-k}}$ (C) $\frac{a_{m+k} + a_{m-k}}{2}$			(A) $S\left(1-\frac{a}{S}\right)^{n}$ (C) $a\left[1-\left(1-\frac{a}{S}\right)^{n}\right]$	(B) $S\left[1-\left(1-\frac{a}{S}\right)^n\right]$ (D) None of these
4.	A number is the recip the arithmetic mean of $\frac{13}{12}$, then the numbers (A) $\frac{1}{4}, \frac{4}{1}$ (C) $\frac{2}{5}, \frac{5}{2}$	the t <mark>wo nu</mark> mbers be	10.	numbers a and b and	(B) $\frac{a+b}{2ab}$ (D) $\frac{ab}{a+b}$
5.	The first and last term and <i>l</i> respectively; <i>r</i> ratio; then the number is (A) $\frac{\log l - \log a}{\log r}$ (C) $\frac{\log a - \log l}{\log r}$	being its common	11. 12.	an A.P. are in G.P. a then the value of the difference to the first $(A) - \frac{2}{n}$ (B) $\frac{2}{n}$ An A.P., a G.P. and	(C) $-\frac{n}{2}$ (D) $\frac{n}{2}$ a H.P. have the same
6.	If the roots of th $ax^{3} + bx^{2} + cx + d = 0$ a (A) $c^{3}a = b^{3}d$ (C) $a^{3}b = c^{3}d$	re in G.P., then (B) $ca^3 = bd^3$		number of terms. Th three series are in (A) A.P. (C) H.P.	(B) G.P. (D) None of these
7.	The sum of <i>n</i> terms of $1+(1+x)+(1+x+x^2)+$ (A) $\frac{1-x^n}{1-x}$ (C) $\frac{n(1-x)-x(1-x^n)}{(1-x)^2}$	f the following series will be (B) $\frac{x(1-x^n)}{1-x}$	13.	and A be the arith	wo geometric means metic mean inserted ers, then the value of (B) <i>A</i> (D) None of these

PG #1

PRERNA EDUCATION

https://prernaeducation.co.in

14.	If first three terms of sequence $\frac{1}{16}$, $a, b, \frac{1}{6}$	17.	Let S_1, S_2, \dots be squares such that for each $n \ge 1$, the length of a side of S_n
	are in geometric series and last three		-
	terms are in harmonic series, then the		equals the length of a diagonal of S_{n+1} . If
	value of a and b will be		the length of a side of S_1 is $10cm$, then for
			which of the following values of n is the
	(A) $a = -\frac{1}{4}, b = 1$		area of S_n less then $1 \text{ sq } cm$ (A) 7 (B) 8 (C) 9 (D) 10
	(n) 1, 1		
	(B) $a = \frac{1}{12}, b = \frac{1}{9}$	18.	If $f(x)$ is a function satisfying
	(C) (A) and (B) both are true		$f(x+y) = f(x)f(y)$ for all $x, y \in N$ such that
	(D) None of these		
			$f(1) = 3$ and $\sum_{n=1}^{n} f(x) = 120$. Then the value
15.	The sum of first n terms of the given		of n is
	series $1^2 + 2.2^2 + 3^2 + 2.4^2 + 5^2 + 2.6^2 + \dots$		(A) 4 (B) 5
	is $\frac{n(n+1)^2}{2}$, when <i>n</i> is even. When <i>n</i> is		(C) 6 (D) None of these
	2	10	In a C D, the sum of three numbers is 11
	odd, the sum will be	19.	In a G.P. the sum of three numbers is 14, if 1 is added to first two numbers and
	(A) $\frac{n(n+1)^2}{2}$ (B) $\frac{1}{2}n^2(n+1)$		subtracted from third number, the series
			becomes A.P., then the greatest number is
	(C) $n(n+1)^2$ (D) None of these		(A) 8 (B) 4 (C) 24 (D) 16
		20	n^{th} term of the series
16.	The sum of the series	20.	
	$1 + (1 + 2) + (1 + 2 + 3) + \dots + upto n$ terms,		$\frac{1^3}{1} + \frac{1^3 + 2^3}{1+3} + \frac{1^3 + 2^3 + 3^3}{1+3+5} + \dots \text{ will be}$
	will be		
	(A) $n^2 - 2n + 6$ (B) $\frac{n(n+1)(2n-1)}{6}$		(A) $n^2 + 2n + 1$ (B) $\frac{n^2 + 2n + 1}{8}$
	Ŭ		$(n^2 + 2n + 1)$ $(n^2 - 2n + 1)$
	(C) $n^2 + 2n + 6$ (D) $\frac{n(n+1)(n+2)}{6}$		(C) $\frac{n^2 + 2n + 1}{4}$ (D) $\frac{n^2 - 2n + 1}{4}$
	U U		
		ION B)	
21.	If $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ be the A.M. of a and b ,	27.	Three non-zero real numbers form an A.P.
			and the squares of these numbers taken in
	then n=		the same order form a G.P. Then the
00	The first terms of a O.D. where encoded		number of all possible common ratios of the G.P. is
22.	The first term of a G.P. whose second		
	term is 2 and sum to infinity is 8, will be	28.	If a ₁ ,a ₂ ,a ₃ a ₂₄ are in arithmetic
			progression and $a_1+a_5+a_{10}+a_{15}+a_{20}+a_{24} =$
23.	The product (32)(32) $^{1/6}$ (32) $^{1/36}$ to ∞ is		225 then $a_1+a_2+a_3$ + $a_{23}+a_{24}=$
			Lu - L7
24.	If the A.M. and H.M. of two numbers is 27		
	and 12 respectively, then G.M. of the two	29.	Let $n(>1)$ be a positive integer, then the
	numbers will be		largest integer m such that $(n^m + 1)$ divides
0 5	In the four numbers first three are in O.D.		$(1+n+n^2+\dots+n^{127})$, is
25.	In the four numbers first three are in G.P.		(2 + 11 + 11 + 111 + 11 + 1, 10
	and last three are in A.P. whose common difference is 6. If the first and last numbers	30.	A G.P. consists of an even number of
			terms. If the sum of all the terms is 5 times
26.	If A.M. of two terms is 9 and H M is 36		
_••	then G.M. will be		equal to
26.	are same, then first will be If A.M. of two terms is 9 and H.M. is 36, then G.M. will be		the sum of the terms occupying places, then the common ratio will