JEE MAIN : CHAPTER WISE TEST PAPER-4					
	JECT :- MATHEMATICS	DATE			
CLASS :- 11 th		NAME			
CHA	PTER :- QUADRATIC EQUATION	SECTION			
(SECTION-A)					
1.	If x_1 , x_2 , x_3 are three distinct roots of the equation $ax^2 + bx + c = 0$, then (A) $a = b = 0$, $c \in R$ (B) $a = b = c = 0$	The true solution $\log_7\left(\frac{2x-6}{2x-1}\right) > 0, \text{ is}$	set of the inequality		
_	(C) $a = c = 0, b \in R$ (D) $b^2 - 4ac \ge 0$	$(2x-1)$ (A) $\left(-\infty, \frac{1}{2}\right)$	(B) (4, ∞)		
2.	The polynomials $P(x) = kx^3 + 3x^2 - 3$ and $Q(x) = 2x^3 - 5x + k$, when divided by $(x - 4)$ leave the same remainder. The value of k, is (A) 1 (B) 2 (C) 3 (D) 4	$(\mathbf{C})\left(-\infty,\frac{1}{3}\right)$	(D) (7,∞)		
	$(x-2)^2(3-x)^3(5-x)^4$	0. In the equation $x^2 - \frac{1}{2}$	$\frac{0x}{9}$ + c = 0, one solution		
3.	If $\frac{(x-2)^2(3-x)^3(5-x)^4}{(4-x)^5} < 0$, then the exhaustive set of real values of x, is	is the square of the other solution.			
	$(A) \ (-\infty, 2) \cup (5, \infty) \qquad (B) \ (3, 4) \cup (5, \infty)$		umber $\left(\frac{m}{n}\right)$ in the lowes		
	(C) $(3, 4)$ (D) $(2, 3) \cup (4, 5)$		of (m + n) is equal to (C) 32 (D) 35		
4.	The positive roots of the equation $\left(\sqrt{200} + \sqrt{56}\right)$		If the roots α , β of the quadratic equation (sin 6 + sin 10 + cos 10)x ² + x + k ² - 3k + 2 = 0 is such that $\alpha < 0 < \beta$, then the true set of		
	$x^{2} + 10x - 2\left(\sqrt{50} - \sqrt{14}\right) = 0$				
	(A) $\frac{\sqrt{26}}{\sqrt{14}}$ (B) $\sqrt{200} - \sqrt{56}$	values of k is, (A) ($-\infty$, 1) \cup (2, ∞)			
	(C) $\frac{5\sqrt{2} - \sqrt{14}}{9}$ (D) $\frac{10}{\sqrt{200} - \sqrt{56}}$	$(C) (-\infty, -2) \cup (-1, \infty)$	(D) (-2, -1)		
5.	The appoximate percentage of the interval [– 5, 15] for which the inequality $x > 4 - \frac{7}{x+4}$ is	12. If one root of the equation $x^2 + px + 12 = 0$ 4, while the equation $x^2 + px + q = 0$ H equals roots, then the value of q, is			
	satisfied, is (A) 55% (B) 65% (C) 60% (D) 45%	(A) $\frac{49}{4}$ (B) $\frac{49}{2}$	•		
6.	The sum of the values of x satisfying the equation $ x^2 + 4x + 3 + 2x + 5 = 0$ is (A) $5 + \sqrt{3}$ (B) $5 - \sqrt{3}$		es of k for which the cubi s exactly two distinct rea		
	(A) $5 + \sqrt{3}$ (D) $5 - \sqrt{3}$ (C) $-5 + \sqrt{3}$ (D) $-5 - \sqrt{3}$	(A) $\frac{13}{4}$ (B) $\frac{15}{4}$	(C) $\frac{3}{4}$ (D) $\frac{11}{4}$		
7.	For the polynomial $P(x) = x^4 + 4$, the correct statement is	4. Solve $x + \sqrt{5x+6} =$	· 0 and identify the true		
	(A) not a product of two non-constant	statement below.	,		
	polynomials with real coefficients.		itions whose product is 6		
	(B) decomposes as a product of a polynomial		tions whose product is – 6		
	of degree 1 and a polynomial of degree 3 with	(C) There are no solu	•		
	real coefficients.		solution and it is locate		
	(C) decomposes as a product of four				
	polynomials of degree 1 with real coefficients.	between $-\frac{5}{2}$ and $-\frac{5}{2}$	<u> </u>		
	(D) decomposes as a product of two polynomials of degree 2 with real coefficients.	2 2	2		
8.	Number of different real numbers which satisfy		$px + 3 = 0, x^2 + qx + 5$ 24 = 0 have a commo		
	the equation $(x^2 + 4x - 2)^2 = (5x^2 - 1)^2$, is	negative root, then th			
	(A) 4 (B) 3 (C) 2 (D) 1	(A) 10 (B) 12	(C) 14 (D) 16		

PG #1

16.	If one solution of $x^3 - 2x^2 + ax + 10 = 0$ is the additive inverse of another, then which one of the following inequalities is true? (A) $-40 < a < -30$ (B) $-30 < a < -20$ (C) $-20 < a < -10$ (D) $-10 < a < 0$	19.	The sum of all values of p for which one root of the quadratic equation $x^2 + 3(1 - 3p)x + 2 = 0$ is twice as large as the other root, is (A) 1 (B) - 1		
17.	If the roots of the equation $x^2 - 2ax + a^2 + a - 3 = 0$ are real and less than 3, then (A) a < 2 (B) $2 \le a \le 3$ (C) $3 < a \le 4$ (D) $a > 4$	20.	(C) $\frac{-2}{3}$ (D) $\frac{2}{3}$ If x is real, then the maximum value of		
18.	Let $f(x) = ax^2 + bx + c$, a, b, $c \in R$, $a > 0$ and $b = 4a\lambda$ where $\lambda \in I$ and f satisfies $f(1) > f(2) < f(4) < f(5)$ then sum of the roots of the equation $f(x) = 0$, is (A) 4 (B) 2 (C) - 2 (D) - 4		$\frac{3x^{2} + 9x + 17}{3x^{2} + 9x + 7}$ is (A) 41 (B) 1 (C) $\frac{1}{4}$ (D) $\frac{17}{7}$		
(SECTION-B)					
21.	Let (x_1, x_2) , (x_2, x_3) and (x_3, x_1) are respectively the roots of $x^2 - 2ax + 2 = 0$, $x^2 - 2bx + 3 = 0$ and $x^2 - 2cx + 6 = 0$, where $x_1, x_2, x_3 > 0$. Find the value of $(a + b + c)$.	26.	Let equations $x^2 - 3x + 4 = 0$ and $4x^2 - 2(b - 5a)x + b = 0$ (a, $b \in R$) have a common root. If thirteen arithmetic means are inserted between a and b, then find arithmetic mean of these means.		
22.	The three different polynomials $x^2 + ax + b$, $x^2 + x + ab$ and $ax^2 + x + b$ have exactly one common zero. Where a, b are non-zero real numbers. Find the value of $a + 2b$.	27.	If all the values of a satisfying max $(a - 1 + 2x - x^2) < min (x^2 - 2ax + 10 - 2a)$ also satisfy the inequality $a^2 + ka - 20 < 0$, then find number of integral values of k.		
23.	If the range of values of k for which the quadratic expression $P(x) = x^2 + 4x + k$ takes only three negative integral values is (a, b]. Find the value of (a + b).	28.	If $x^2 + y^2 = 4$ and m & M are the minimum and maximum value of expression $(1 - 2x^2)^2 + 4x^2y^2$, then find the value of $\left(\frac{M}{7} - 2m\right)$.		
24.	If $P(x)$ be a monic polynomial of degree 3 such that	29.	Let $f(x) = 1 + \log_2(\tan^2 x)$ and $g(x) = 3 + \log_2(\tan^2 x)$		
	$(P(1)-2)\alpha^2 + (P(2)-5)\alpha + P(3) - 10 = 0$		$(\cot^2 x), x \in \left(0, \frac{\pi}{2}\right).$		
	$(P(1)-2)\beta^2 + (P(2)-5)\beta + P(3) - 10 = 0$		If $h(x) = 3x^2 - (k^2 - 2k)x - 168$, $k \in R$ and		
	$(P(1)-2)\gamma^{2} + (P(1)-5)\gamma + P(3) - 10 = 0$		$h(2^{f(x)}+2^{g(x)}) > 0 \forall x \in (0,\frac{\pi}{2})$, then find		
	where $\alpha, \beta, \gamma \in R$, then find $ P(0) $.		number of integral values of k.		
25.	Find the difference of largest value of the expression $10 - 3 \sin^2 3x + 2 \sin 6x$ to least value of expression $2 \cos 2x - 4 \cos x + 5$.	30.	If one of the roots of the quadratic equation $(k^2 - 2k + 2) x^2 + 4 (k - 1)x - 4 k^2 = 0, k \in \mathbb{R}$ is less than –2, then find least integral value of k.		