JEE MAIN : CHAPTER WISE TEST-4

https://prernaeducation.co.in

(D) $\left(\sqrt{(M+m)^2+M^2}\right)g$

(A) 6 î-8 ĵ+10 k kg
(B) 10√2 kg
(C) 100 kg
(D) 10 kg
14. A body of mass 32 kg is suspended by a spring balance from the roof of a vertically operating lift and going downward from rest. At the instants the lift has covered 20

The mass of the body is (in kg) :

System is shown in figure and wedge is moving towards left with speed 2 m/s.

A particle is moving with a constant speed along a straight line path. A force is not

(D) keep it moving with uniform velocity

In which of the following cases the net

(A) A kite skillfully held stationary in the

(C) An aeroplane rising upwards at an

angle of 45° with the horizontal with a

A force $\vec{F} = 6 \hat{i} - 8 \hat{j} + 10 \hat{k}$ newton

produces acceleration 1 m/s² in a body.

(D) A cork lying on the surface of water

(B) A ball freely falling from a height

(B) 1 m/s

(D) 0 m/s

Then velocity of the block B will be:

2m/s

(A) √3 m/s

required to :

(A) increase its speed(B) decrease its momentum(C) change the direction

force is not zero?

constant speed

sky

(C) 2 m/s

m and 50 m, the spring balance showed 30 kg & 36 kg respectively. The velocity of the lift is:

(A) decreasing at 20 m & increasing at 50 m

(B) increasing at 20 m & decreasing at 50 m

(C) continuously decreasing at a constant rate throughout the journey

(D) continuously increasing at constant rate throughout the journey

PRERNA EDUCATION

(A) A = $a_1 - a_2$

(C) A = $\frac{a_1 - a_2}{2}$

(B) $A = a_1 + a_2$

15. A block of mass m resting on a wedge of angle θ as shown in the figure. The wedge is given an acceleration a towards left. What is the minimum value of **a** due to external agent so that the mass m falls freely ?

16. A block of mass m is connected to another block of mass M by a string (massless). The blocks are kept on a smooth horizontal plane. Initially the blocks are at rest. Then a constant force F starts acting on the block of mass M to pull it. Find the force on the block of mass m

(A)
$$\frac{mF}{m}$$
 (B) $\frac{(M+m)}{m}$
(C) $\frac{mF}{(m+M)}$ (D) $\frac{MF}{(m+M)}$

17. A particle of mass m is at rest at the origin at time t = 0. It is subjected to a force $F(t) = F_0 e^{-bt}$ in the x direction. Its speed v(t) is depicted by which of the following curves ?

18. Consider the shown arrangement. Assume all surfaces to be smooth. If 'N' represents magnitude of normal reaction between block and wedge then acceleration of 'M' along horizontal equals:

- (D) $\frac{Nsin\theta}{m+M}$ along -ve x-axis
- 19. Three blocks A , B and C are suspended as shown in the figure. Mass of each block A and C is m. If system is in equilibrium and mass of B is M , then :

20. Which of the following statement is absolutely correct about mass -

> (A) More the mass of a body connected with spring balance more will be elongation in spring balance

> (B) More the mass of body kept in one pan of beam balance more the mass has to be kept on the other pan to keep beamhorizontal

> (C) More the mass of a body, lesser will be its acceleration for a given force(D) All

(SECTION B)

 $\mu_{c} = 0.6$

θ

21. Two blocks of equal mass are kept in in contact with each other on an inclined plane as shown in figure. If θ_0 is the minimum value of angle θ for which both the blocks start sliding then what is the value of 2 cot θ_0 .

PRERNA EDUCATION

https://prernaeducation.co.in

PG #3 011-41659551 || 9312712114

 $\mu_{c} = 0.2$

22. If acceleration of block B w.r.t. A is $2m/s^2$ just after the system isreleased from rest, then mass(in kg) of block C will be [pulley and string both are massless, take g = 10 m/s²]

23. Value of angle of repose (in degrees) for a block placed inside an 'L-section' as shown in figure. Friction coefficient between block

24. A system of two blocks is placed on an accelerating conveyor belt. If there is no slipping between 6kg block and conveyor belt and friction coefficient between 4kg & 6kg block is 0.5 then frictional force acting between 6kg & conveyor belt will be

25. Two blocks A and B of equal mass m are connected through a massless string and arranged as shown in figure. Friction is absent everywhere. When the system is released from rest, then find the tension in string. Where m is 2 kg. ($g = 10m/s^2$)

A uniform Rope of mass 400kg is pulled with a constant horizontal force F = 16 N on a horizontal rough surface (friction coefficient = 0.5). Tension at midpoint of the rope will be.

27. A smooth wedge of mass M = 10kg, height h = 3m angle of inclination $\alpha = 37^{\circ}$ is at rest at smooth horizontal surface. There is a small pointlike object (mass m = 0.5kg) next to the slope as shown in the figure. At what acceleration must wedge be moved in order that the point like object reaches its top in a time t = 5s. (Take right as positive direction.)

28. For the pulley system , each of the cables at A and B is given velocity of 4m/s in the direction of the arrow. Determine the upward velocity v of the load m. (in m/s)

29. The vertical displacement of block A in meter is given by $y = t^2/4$ where t is in second. Calculate the downward acceleration a_B of block B. (in m/s²)

30. A bead of mass m is fitted on to a rod of a length of 2ℓ and can move on it without friction. At the initial moment the bead is in the middle of the rod. The rod moves translationally in a horizontal plane with an acceleration 'a' in a direction forming an angle α with the rod. Find the time when the bead will leave the rod. If $\ell = 2m$, $a = 2m/s^2$ and $\alpha = 60^\circ$