NEET : CHAPTER WISE TEST-4				
SUBJE	ECT :- CHEMISTRY		DATE	
CLASS	S :- 11 [™]		NAME	
CHAP	TER :- CHEMICAL BONDING		SECTION	
	(SECT	ION-A)	The estated is not allowed in a	
1.	Which forms a crystal of NaCl ? (A) NaCl molecules (B) Na ⁺ and Cl [−] ions (C) Na and Cl atoms	8.	(A) CO_2 (B) BCI_3 (C) PCI_5 (D) (B) and (C) both	
2	(D) None of these	9.	For the formation of covalent bond the difference in the value of electronegativity	
Ζ.	and 3.0. Bond formed between them would be : (A) predominantely ionic (B) predominantely covalent (C) co-ordinate	10	(A) 1.7 (B) More than 1.7 (C) 1.7 or more (D) equal to or less than 1.7	
•	(D) metallic	10.	hypervalent ? 1. CIO_4^{-} . 2. BF_3 .	
3.	(A) RbF (B) CsF (C) NaF (D) KF		3. SO_4^{2-} ,4. CO_3^{2-} (A) 1, 2, 3(B) 1, 3(C) 3, 4(D) 1, 2	
4	When two atoms combine to form a stable	11.	If the atomic number of element X is 7 the lewis diagram for the element is :	
	molecule : (A) energy is released		(A) X. (B) .X:	
	 (B) energy is absorbed (C) energy is neither released nor absorbed (D) energy may either released or absorbed 		(C) • × • (D) • × •	
5.	Which condition favour <mark>s th</mark> e bond	12.	What are the formal charges on central sulphur and each terminal oxygen atoms	
	formation ? (A) Maximum attraction and maximum		$\begin{array}{c} \text{(A) } 0, 0, 0 \\ \text{(C) } 0, -1, +1 \\ \end{array} \qquad \begin{array}{c} \text{(B) } +2, 0, -1 \\ \text{(D) } +2, +2, +2 \\ \end{array}$	
	(B) Minimum attraction and minimum potential energy (C) Minimum potential energy and maximum attraction (D) None of the above	13.	Resonating structures have different : (A) atomic arrangements (B) electronic arrangements (C) functional groups (D) alkyl groups	
6.	The maximum covalency of representative elements is equal to (excluding 1st and 2nd period): (A) the number of unpaired p-electrons (B) the number of paired d-electrons (C) the number of unpaired s and p- electrons (D) the actual number of s and p-	14.	What is correct order of bond order of CI– O bond. (A) $CIO_4^- > CIO_3^- > CIO_2^- > CIO^-$ (B) $CIO^- < CIO_2^- > CIO_3^- < CIO_4^-$ (C) $CIO_3^- < CIO_2^- < CIO_4^- < CIO^-$ (D) $CIO_2^- < CIO_3^- < CIO_4^- < CIO^-$	
7.	electrons in the outermost shell. The types of bond present in N ₂ O ₅ are : (A) only covalent (B) only ionic (C) ionic and covalent (D) covalent & coordinate	15.	(A) single N–N bond is stronger than single P–P bond (B) single N–N bond is weaker than single P–P bond (C) N \equiv N is weaker than P \equiv P (D) None of these	

16.	Number and type of bonds between two carbon atoms in CaC ₂ are : (A) 3 sigma (σ) and 2 pi (π) bond	22.	The ion which is not tetrahedral in shape is : (A) BF_4^- (B) NH_4^+ (C) XeO_4 (D) ICI_4^-
	(B) one σ and two π bonds		
	(C) one σ and one and a half π bond	23.	The pair having similar geometry is :
	(D) one σ bond		(A) BF_3 , NH_3 (B) BF_3 , AIF_3 (C) BeF_2 , H_2O (D) BCI_3 , PCI_3
17.	Acetylene consists of : (A) both sigma and pi bonds (B) sigma bond only (C) pi bond only (D) none of these	24.	The correct order of bond angle is : (A) $H_2S < NH_3 < BF_3 < CH_4$ (B) $NH_3 < H_2S < CH_4 < BF_3$ (C) $H_2S < NH_3 < CH_4 < BF_3$ (D) $H_2S < CH_4 < NH_3 < BF_3$
18.	Number of bonds in SO ₂ are : (A) two σ and two π (B) two σ and one π (C) two σ , two π and one lone pair (D) none of these Which of the following has been arranged	25.	During the formation of a molecular orbital from atomic orbitals of the same atom, probability of electron density is : (A) non zero in the nodal plane (B) maximum in the nodal plane (C) zero in the nodal plane (D) zero on the surface of the lobe
	in increasing order of % p-character?	26.	Which one of the following can not exist on
	(A) $sp < sp^2 < sp^3$ (B) $sp^3 < sp^2 < sp$		the basis of molecular orbital theory ?
	(C) sp < sp < sp (D) sp < sp < sp		(A) H_2^+ (B) He_2^+
20.	Which is not true about CH ₄ molecule ?		(C) C_2 (D) He_2
	(A) Tetrahedral shape	27.	Among the following species, which has
	(B) 109.28° bond angle		the minimum bond length ?
	(D) One lone pair of electrons on carbon		(A) B_2 (B) C_2
	()		(C) F_2 (D) O_2^-
21.	Which is the right structure of XeF ₄ ?	28.	Number of antibonding electrons in N ₂
			molecule is :
	(A) Xe		(A) 4 (B) 10 (C) 12 (D) 14
		29.	A simplified application of molecular orbital
	F _		theory to the hypothetical 'molecule' OF
	E E		would give its bond order as :
			(A) 2 (B) 1.5 (C) 1.0 (D) 0.5
		30.	According to Fajan's rule covalent character is favoured by :
	_ 1		(A) large cation and small anion
	F		(B) small cation and large anion
	(C) Xe		(D) small cation and small anion
	F Xe Xe F	31.	Correct order of covalent character of
			alkaline earth metal chloride in
			(A) $BeCl_2 < MgCl_2 < CaCl_2 < SrCl_2$
	(U)		(B) $BeCl_2 < CaCl_2 < SrCl_2 < MgCl_2$
	lř F		(C) $BeCl_2 > MgCl_2 > CaCl_2 > SrCl_2$ (D) $SrCl_2 > BeCl_2 > CaCl_2 > MgCl_2$
	· · · · · · · · · · · · · · · · · · ·		
			PG #2

32.	Which is most ionic according to Fajan's			
	rule?: (A) AIF ₃	(B) Al ₂ O ₃		
	(C) AIN	(D) Al ₄ C ₃		
33.	Which statement(s (A) Polarising pow	Which statement(s) is incorrect ? A) Polarising power refers to cation.		
	(B) Polarisability re (C) Small cation	(B) Polarisability refers to anion.		
	polarise anion.	which action boying		
	pseudo inert gas	configuration are more		
	Ionic.			
34.	Among Na ⁺ , Mg ²⁺ and Al ³⁺ , the correct order of ease of formation of ionic			
	compounds is : (A) $AI^{3+} > Ma^{2+} > N$	la⁺		
	(B) $Na^+ > Mg^{2+} > A$) ³⁺		
	(D) $AI^{3+} > Na^{+} > M$	g ²⁺		
35.	The most polar bo	nd is :		
	(A) C – H (C) S – H	(B) N – H (D) O – H		
	(SECTIO	DN-B)		
36.	Of the following m	olecules, the one, which		
	(A) SiF ₄ (C) PF ₄	(B) BF_3 (D) PF_2		
27	(A) SiF ₄ (C) PF ₃	(B) BF_3 (D) PF_5		
37.	(A) SiF ₄ (C) PF ₃ The correct order of (A) CH ₄ < NF ₃ < N	(B) BF ₃ (D) PF ₅ of dipole moment is : $H_3 < H_2O$		
37.	(A) SiF ₄ (C) PF ₃ The correct order of (A) CH ₄ < NF ₃ < N (B) NF ₃ < CH ₄ < N (C) NH ₃ < NF ₃ < C	(B) BF ₃ (D) PF ₅ of dipole moment is : $H_3 < H_2O$ $H_3 < H_2O$ $H_4 < H_2O$		
37.	(A) SiF ₄ (C) PF ₃ The correct order of (A) CH ₄ < NF ₃ < N (B) NF ₃ < CH ₄ < N (C) NH ₃ < NF ₃ < C (D) H ₂ O < NH ₃ < N	(B) BF ₃ (D) PF ₅ of dipole moment is : $H_3 < H_2O$ $H_3 < H_2O$ $H_4 < H_2O$ $H_4 < H_2O$ $ F_3 < CH_4$		
37. 38.	(A) SiF ₄ (C) PF ₃ The correct order of (A) CH ₄ < NF ₃ < N (B) NF ₃ < CH ₄ < N (C) NH ₃ < NF ₃ < C (D) H ₂ O < NH ₃ < N The dipole moment	(B) BF ₃ (D) PF ₅ of dipole moment is : $H_3 < H_2O$ $H_3 < H_2O$ $H_4 < H_2O$ $IF_3 < CH_4$ at of HCl is 1.03 D. If H- is 1.26 Å what is the		
37. 38.	(A) SiF ₄ (C) PF ₃ The correct order of (A) CH ₄ < NF ₃ < N (B) NF ₃ < CH ₄ < N (C) NH ₃ < NF ₃ < C (D) H ₂ O < NH ₃ < N The dipole moment CI bond distance percentage of ionit	(B) BF ₃ (D) PF ₅ of dipole moment is : $H_3 < H_2O$ $H_3 < H_2O$ $H_4 < H_2O$ $IF_3 < CH_4$ it of HCl is 1.03 D. If H– is 1.26 Å, what is the c character in the H–Cl		
37. 38.	(A) SiF ₄ (C) PF ₃ The correct order of (A) CH ₄ < NF ₃ < N (B) NF ₃ < CH ₄ < N (C) NH ₃ < NF ₃ < C (D) H ₂ O < NH ₃ < N The dipole moment Cl bond distance percentage of ionition bond - (A) 60%	(B) BF ₃ (D) PF ₅ of dipole moment is : $H_3 < H_2O$ $H_3 < H_2O$ $H_4 < H_2O$ $IF_3 < CH_4$ at of HCl is 1.03 D. If H- is 1.26 Å, what is the c character in the H-Cl (B) 39%		
37. 38.	(A) SiF ₄ (C) PF ₃ The correct order of (A) CH ₄ < NF ₃ < N (B) NF ₃ < CH ₄ < N (C) NH ₃ < NF ₃ < C (D) H ₂ O < NH ₃ < N The dipole moment CI bond distance percentage of ionition bond - (A) 60% (C) 29%	(B) BF ₃ (D) PF ₅ of dipole moment is : $H_3 < H_2O$ $H_3 < H_2O$ $H_4 < H_2O$ $IF_3 < CH_4$ ant of HCl is 1.03 D. If H- is 1.26 Å, what is the c character in the H-Cl (B) 39% (D) 17%		
37. 38. 39.	(A) SiF ₄ (C) PF ₃ The correct order of (A) CH ₄ < NF ₃ < N (B) NF ₃ < CH ₄ < N (C) NH ₃ < NF ₃ < C (D) H ₂ O < NH ₃ < N The dipole moment Cl bond distance percentage of ionis bond - (A) 60% (C) 29% Which is the true st (A) It is trigonal pla	(B) BF ₃ (D) PF ₅ of dipole moment is : H ₃ < H ₂ O H ₃ < H ₂ O H ₄ < H ₂ O IF ₃ < CH ₄ At of HCl is 1.03 D. If H- is 1.26 Å, what is the c character in the H-Cl (B) 39% (D) 17% atement about (SiH ₃) ₃ N ? mar.		
37. 38. 39.	(A) SiF ₄ (C) PF ₃ The correct order of (A) CH ₄ < NF ₃ < N (B) NF ₃ < CH ₄ < N (C) NH ₃ < NF ₃ < C (D) H ₂ O < NH ₃ < N The dipole moment CI bond distance percentage of ionition bond - (A) 60% (C) 29% Which is the true st (A) It is trigonal plat (B) It is trigonal plat (C) It is stronger	(B) BF ₃ (D) PF ₅ of dipole moment is : $H_3 < H_2O$ $H_3 < H_2O$ $H_4 < H_2O$ $IF_3 < CH_4$ at of HCl is 1.03 D. If H- is 1.26 Å, what is the c character in the H-Cl (B) 39% (D) 17% atement about (SiH ₃) ₃ N ? mar. rramidal. lewis base than that of		
37. 38. 39.	(A) SiF ₄ (C) PF ₃ The correct order of (A) CH ₄ < NF ₃ < N (B) NF ₃ < CH ₄ < N (C) NH ₃ < NF ₃ < C (D) H ₂ O < NH ₃ < N The dipole moment CI bond distance percentage of ionition bond - (A) 60% (C) 29% Which is the true st (A) It is trigonal plat (B) It is trigonal plat (B) It is stronger (CH ₃) ₃ N.	(B) BF_3 (D) PF_5 of dipole moment is : $H_3 < H_2O$ $H_3 < H_2O$ $H_4 < H_2O$ $IF_3 < CH_4$ at of HCl is 1.03 D. If H- is 1.26 Å, what is the c character in the H-Cl (B) 39% (D) 17% externent about (SiH ₃) ₃ N ? mar. rramidal. lewis base than that of		
37. 38. 39.	(A) SiF ₄ (C) PF ₃ The correct order of (A) CH ₄ < NF ₃ < N (B) NF ₃ < CH ₄ < N (C) NH ₃ < NF ₃ < C (D) H ₂ O < NH ₃ < N The dipole momer Cl bond distance percentage of ioni bond - (A) 60% (C) 29% Which is the true st (A) It is trigonal pla (B) It is trigonal pla (B) It is stronger (CH ₃) ₃ N. (D) It has a total of	(B) BF_3 (D) PF_5 of dipole moment is : $H_3 < H_2O$ $H_3 < H_2O$ $H_4 < H_2O$ $IF_3 < CH_4$ at of HCl is 1.03 D. If H- is 1.26 Å, what is the c character in the H-Cl (B) 39% (D) 17% atement about (SiH ₃) ₃ N ? mar. rramidal. lewis base than that of F_9 sigma bonds.		
37. 38. 39.	(A) SiF ₄ (C) PF ₃ The correct order of (A) CH ₄ < NF ₃ < N (B) NF ₃ < CH ₄ < N (C) NH ₃ < NF ₃ < C (D) H ₂ O < NH ₃ < N The dipole momer Cl bond distance percentage of ioni bond - (A) 60% (C) 29% Which is the true st (A) It is trigonal pla (B) It is trigonal pla (B) It is stronger (CH ₃) ₃ N. (D) It has a total of Which of the follow (A) HF	(B) BF ₃ (D) PF ₅ of dipole moment is : H ₃ < H ₂ O H ₃ < H ₂ O H ₄ < H ₂ O IF ₃ < CH ₄ at of HCl is 1.03 D. If H– is 1.26 Å, what is the c character in the H–Cl (B) 39% (D) 17% atement about (SiH ₃) ₃ N ? mar. rramidal. lewis base than that of 9 sigma bonds. ring is least volatile ? (B) HCl		

41.	Which one of the following does not have intermolecular H-bonding?			
	(A) п ₂ 0 (C) HF		(в) о-n (D) CH	acooH ₃COOH
42.	Which of the hydrogen-bond	following ling ?) moleci	ule exhibits
	(A) CH ₄ (C) N ₂ H ₄		(B) H ₂ S (D) H ₂ S	Se S
43.	Hydrogen bon boiling point of	ding wo :	uld not	affect the
	(A) HI (C) CH₃OH		(B) NH (D) H ₂ (3 D
44.	Which of the maximum num	followir ber of H-	ng com bonds p	pound has er mole ?
	(A) HF (C) H ₂ O		(B) PH (D) OF	3 2
45.	Which of the describes the b graphite structure	e follow oonding v ure ?	<i>i</i> ing mo within a	odels best layer of the
	(A) metallic bor	nding		
	(C) covalent bo	ng onding		
	(D) van der Wa	als force	es	
46.	Which of the weakest ?	followin	ig bond	s/forces is
	(A) Covalent be (C) Metallic bo	ond nd	(B) Ioni (D) Lor	ic bond ndon force
47.	Among the follo are strongest in	owing, va n :	an der W	aals forces/
	(A) HBr (C) LiCl		(B) LiB (D) Agl	r Br
48.	Match list I w correct answe	vith List er using	II and the co	select the odes given
	below the lists.		List II	
	(Compound)		(Shape	e)
	$(A) CS_2$ $(B) SO_2$		2. Line	ar
	(C) BF ₃ (D) NH ₂		3. Trigo 4 Tetra	onal planer abedral
	(0) 1113		5. Trigo pyrami	onal dal
	Code : (A)	(B)	(C)	(D)
	(A) 2	1	3	5
	(B) 1 (C) 2	∠ 1	ა 5	э 4
	(D) 1	2	5	4
				DC #2

49.	 Assertion : Between SiCl₄ and CCl₄, only SiCl₄ reacts with water. Reason : Si Cl₄ is ionic and CCl₄ is covalent. (A) If both (A) and (R) are true, and (R) is the correct explanation of (A). (B) If both (A) and (R) are true but (R) is 	50.	 Assertion : BCl₃, BBr₃ and Bl₃ all are lewis bases. Reason : BCl₃, BBr₃ and Bl₃ all are electron deficient compounds. (A) If both (A) and (R) are true, and (R) is the correct explanation of (A). (B) If both (A) and (R) are true but (R) is
	(B) If both (A) and (R) are true but (R) is not the correct explanation of (A)		(B) If both (A) and (R) are true but (R) is not the correct explanation of (A)
	(C) If (A) is true but (R) is false.(D) If (A) is false but (R) is true.		(C) If (A) is true but (R) is false.(D) If (A) is false but (R) is true.