JEE MAIN : CHAPTER WISE TEST PAPER-4									
SUBJE	ECT :- CHEMISTRY		DATE						
CLASS									
CHAPTER:-CHEMICAL BONDING			3ECTION						
1.	Which forms a crystal of NaCl ? (A) NaCl molecules (B) Na⁺ and Cl⁻ ions	9.	Match list I with List II and select the correct answer using the codes given below the lists.						
	(C) Na and Cl atoms (D) None of these		List I (Compound)		List II (Shape)				
2.	Two element have electronegativity of 1.2 and3.0. Bond formed between them would be :(A) ionic(B) polar covalent(C) co-ordinate(D) metallic		(A) CS_2 (B) SO_2 (C) BF_3 (D) NH_3			1. Ber 2. Line 3. Trig 4. Tetr 5. Trig	ear Ional planer ahedral Ional pyramidal		
3.	Correct order of covalent character of alkaline earth metal chloride in	;	Code :						
	(A) $BeCl_2 < MgCl_2 < CaCl_2 < SrCl_2$ (B) $BaCl_2 < CaCl_2 < SrCl_2$		(A) (A)	A) 2	(B) 1	(C) 3	(D) 5		
	(C) BeCl > MaCl > CaCl > SrCl		(B) 1	1	2	3	5		
	(D) $\operatorname{SrCl}_2 > \operatorname{BeCl}_2 > \operatorname{CaCl}_2 > \operatorname{MgCl}_2$ (D) $\operatorname{SrCl}_2 > \operatorname{BeCl}_2 > \operatorname{CaCl}_2 > \operatorname{MgCl}_2$		(C) 2 (D) 1	2 1	1 2	5 5	4 4		
4.	The maximum covalency of representative elements (having zero formal charge) is equal to (excluding 1st and 2nd period): (A) the number of unpaired p-electrons (B) the number of paired d-electrons (C) the number of unpaired s and p-electrons (D) the actual number of s and p-electrons in	10.	The pair having similar geometry is : (A) BF_3 , NH_3 (B) BF_3 , AIF_3 (C) BeF_4 H O (D) BC_4 PC				ry is : ⁻ ₃ , AIF ₃ CL PCL		
		11.	Choose the molecules in which hybridisation occurs in the ground state ?						
_	the outermost shell.		(a) BCl_3 The corre	(b) l ect ans	NH ₃ weris:	(c) PC	I_3 (d) BeF ₂		
5.	(A) only covalent (B) only ionic		(A) a, b, c (C) b, c	d		(B) a, (D) c,	b, c d		
c	(C) ionic and covalent(D) covalent & coordinateWhich are in the following is not the reconstinue	12.	In C—C bond C_2H_6 undergoes heterolytic fission, the hybridisation of two resulting carbon atoms is :						
0.	etructure of CO		(A) sp ² bo	oth		(B) sp	³ both		
	$(A) O = C = O (B) O = C = O (C)^{-0} O^{-1} O^{$		(C) sp², s	sp ³		(D) sp	, sp²		
		13.	The hybri	idizatio	on in PF	₃ is :	-		
7.	Number and type of bonds between two carbon atoms in CaC, are :	1	(A) sp ³ (C) dsp ³			(B) sp (D) d²s	2 Sp ³		
	(A) one sigma (σ) and one pi (π) bond (B) one σ and two π bonds	14.	For BF ₂ m	nolecul	le which	of the fo	bllowing is true ?		
	(C) one σ and one and a half π bond (D) one σ bond		 (A) B-atom is sp² hybridised. (B) There is a pπ-pπ back bonding in this molecule 						
8.	Indicate the wrong statement according to Valence bond theory : (A) A sigma bond is stronger then π - bond (B) p-orbitals always have only sidewise		(C) Obse less t (D) All of	erved E than th these	3–F bor e expe	nd length cted bor	n is found to be nd length.		
	(C) s-orbitals never form π - bonds (D) There can be only one sigma bond between	15.	Which on basis of n	ne of th molecu	e follow Ilar orbi	ing can tal theor	not exist on the y?		
	two atoms		(A) H ₂ ⁺	(B)	He ₂ ⁺	(C) C ₂	(D) He_2		

16.	Among the following species, which has the minimum bond length?	19.	Which one of the following does not have intermolecular H-bonding?					
47	(A) B_2 (B) C_2 (C) F_2 (D) O_2^{-1}		$(A) H_2O$ $(B) \text{ o-nitro phenol}$ $(C) HF$ $(D) CH_3COOH$					
17.	(A) NO ⁻ (B) O_2^{2-} (C) CN ⁻ (D) CO	20.	Which of the following bonds/forces is weakest? (A) Covalent bond (B) Ionic bond					
18.	Of the following molecules, the one, which has permanent dipole moment, is:		(C) Metallic bond (D) London force					
	$(A) \operatorname{Sir}_4 (B) \operatorname{Br}_3 (C) \operatorname{Fr}_3 (D) \operatorname{Fr}_5 $	ON-B)						
21.	Number of antibonding electrons in N_2 is :	25.	Calculate the minimum and maximum number of P–O linkages of identical length in P_4O_{10} . (If the answer is 3 and 18, then represent as 318)					
22.	Oxidising power of chlorine in a aqueous solution can be determined by the parameters indicated below:							
	$\frac{1}{2} \text{ Cl}_2(g) \xrightarrow{1/2 \Delta_{diss} H^{\circ}} \text{ Cl } (g) \xrightarrow{\Delta_{eg} H^{\circ}}$	$\stackrel{\mathrm{H}^{\circ}}{\longrightarrow}$ 26.	The given molecule is $CF_2 = C = C = C = C = CH_2$ Find the maximum number of nodel plane of π					
	$CI^{-}(g) \xrightarrow{\Delta_{hyd}H^{\circ}} CI^{-}(aq)$ The magnitude of energy (in kJ/mol) released		bonds those are lying in the plane perpendicular to the molecular plane.					
	in the conversion of $\frac{1}{2}$ Cl ₂ (g) to Cl ⁻ (aq)	27.	The ratio of number of σ -bonds to π -bonds in $C_2(CN)_4$ molecule is					
	(using data Δ_{diss} H° Cl ₂ = 240 kJ/mol, Δ_{eg} H° Cl = – 349 kJ/mol, Δ_{hyd} H° Cl ⁻ = –381 kJ/mol) will be	28.	Using the following species how many ionic compounds can be made. (Only one cation and one anion is to be chosen at a time) NH_4^+ , SO_4^{2-} , CI^- , Mq^{2+} , AI^{3+} . $NO_5^{}$					
23.	The given molecule is $CE = C = C = CH$							
	Find the number of maximum atoms which may lie in the same plane.	29.	The ratio of lone pairs on the surrounding atoms to that of central atom of XeO_2F_2 is					
24.	Find the sum of the number of P = O, P – O – P linkages in $P_5O_{16}^{-7}$ ion.	30.	Find the number of planes "containing maximum number of atoms and in which at least two atoms are same", in the molecule of CH_3CI .					