JEE MAIN ANSWER KEY & SOLUTIONS

SUBJ CLAS CHAP	3UBJECT :- CHEMISTRY CLASS :- 11 th CHAPTER :- PREODIC TABLE									PAPER CODE :- CWT-3						
ANSWER KEY																
1. 8. 15. 22. 29.	(C) (B) (C) 4 3	2. 9. 16. 23. 30.	(B) (C) (A) 6 8	3. 10. 17. 24.	(D) (B) (D) 125	4. 11. 18. 25.	(E (C (A 36	3) C) A) 6	5. 12. 19. 26.	(D) (C) (A) 80	6. 13. 20. 27.	(C) (D) (A) 8	7. 14. 21. 28.	(D) (C) 6 1		
						SOLL	ITIO	NS								
1. Sol. 2. Sol.	(C) It is factual.(B) Since in d-orbital maximum 10 electrons can							ol.	(C) As size of atom increases, the distance between nucleus and outer most electrons increases. So the attraction between the nucleus and outer most electron decreases. As							
	be fill	ed.						a result the ionisation energy decrease						s.		
3. Sol.	(D) For isoelectronic species, as Z increases, Z _{eff} increases (and vice versa).						12 Sc	2. DI.	(C) Electron affinity is the measure of the ease with which an atom receives the additional electron in its valence shell in gaseous phase.							
4. Sol.	(B) Sn⁴⁺ :	> In⁺ > S	n > In						decreases due to increase in atom				electron atomic si	affinity ze.		
5.	(D)						13 Sc	6. 51.	(D) In chlorine, the addition of additional electron to larger 3p-subshell experiences less electron-							
6. Sol.	(C) Bil₅ d strong and fe	loes not g reducir orms Bil _g	exists b ng agent. 3	ecause . So it re	of I ⁻ bei duces Bi	ng very ⁵⁺ to Bi³⁺			electron repulsion than smaller 2p-subshell of fluorine. Phosphorus has very low electron affinity because there is high electron repulsion when the incoming electron enters an orbital that is already half filled.							
7. Sol.	(D) All are isoelectronic species and thus Na ⁺ has smallest ionic radius because of high effective nuclear charge (i.e., 11 No. of protons as compared to 9, 8 and 7 in F, O and N						14 Sc	l. DI.	(C) According to Mulliken's, the electronegativity = 1000000000000000000000000000000000000							
	respe	ectively).									Z					
8. Sol.	(B) O⁺ is bigge	smaller er than	than pai parent	rent ator atom. C	m while a D²- and	anion is N³- are	15 Sc	i. ol.	(C) Eelctronegativity values are as given below N = 3.0; C = 2.5; Si = 1.8; P = 2.1							
	isoel	ectronio 1 ar charge	c speci Henc	es. So e the co	ionic s	size ∞ ler is O⁺	16 Sc	5. DI.	(A) Halogens have valence shell electron configuration ns ² np ⁵ . They have highest electronegative values in their respective period.							
	< ()2-	[·] < N ^{3−} .					<i></i>									
9.	(C)						17	·	(U)							
10. Sol.	(B) Half stabil outer	filled e ity. Heno most ort	lectron of the reput	configur emoval o res highe	ation hat of electro er energy	as extra on from /.	18 Sc	8. DI.	(A) Due to of oute energy config	o stable h er most s y than O uration c	alf filled hell of N which ha	electron , it has h as partial nost she	hic config higher ior ly filled e ell.	juration hisation electron		

19.	(A)	25.	36				
Sol.	Atomic radii of zero group elements are	Sol.	Each orbital contain 4-electron				
	r > r		s p d-orbital				
	van der Waal's covalent						
20.	(A)		4 $3 \times 4 = 12$ $5 \times 4 = 20$ Total electron = 4 + 12 + 20 = 36 Ans.]				
Sol.	For isoelectronic species, as Z increases, Z _{eff}						
		26. Sol.	80 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹				
21.	6		$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$				
22.	4		2+1=3 $3+0$ $l=2$				
Sol.	Ni \rightarrow 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁸ 4s ²		$\frac{1}{6e^{-}} \frac{1}{2e^{-}} \frac{1}{10e^{-}}$				
	Grouping		8 electron				
	$(1_{2})^{2}$ $(2_{2}2_{2})^{8}$ $(2_{2}2_{2})^{8}$ $(2_{3}d)^{8}$ $(4_{2})^{2}$		n + l = 3 = 8 electron				
	$\rightarrow (13) (232p) (335p) (3d) (48)$		8 × 10 = 80]				
	$\sigma = 10 \times 1 + 16 \times 0.85 + 1 \times 0.35 = 23.95$	27	0				
	$Z_{eff} = Z - \sigma$	Sol.	$Br^- \longrightarrow 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^{10}, 4s^2, 4p^6$				
	$= 28-23.95 = 4.05 \simeq 4$]		Electron of m = $+1 \rightarrow 0 + 0 + 2 + 0 + 2 + 2$				
22			+ 0 + 2 ⇒ 8]				
zs. Sol	δ AX = EN EN - = 35 - 20 = 15	28.	1				
	% Ionic character = $16\Delta X + 3.5 (\Delta X)^2$	Sol.	19.5 = 16 Δ + 3.5 Δ^2				
	μ_{exp} too		$\therefore \Delta = 1$]				
	% Ionic character = $\frac{m_{\rm r}}{\mu_{\rm theo}} \times 100$	29.	3				
	$16(1.5) + 3.5 (1.5)^2$	Sol.	83 79 42 64 37 54 34				
	$\mu_{\rm exp} \times \frac{1}{3} \times 10^{-29}$		$\psi \qquad \psi \qquad$				
	$= \frac{1.6 \times 10^{-19} \times 3.92 \times 10^{-10}}{1.6 \times 10^{-19} \times 3.92 \times 10^{-10}} \times 100$		Total p-block element = 0003]				
	μ_{exp} = 5.99 approximate 6]	30.	8				
24	125	Sol.	$_{25}$ Mn \rightarrow 1s ²				
∠ . Sol.	Possible subshells are present in 9 th period		2s ² 2p ⁶ 3s ² 3n ⁶ 3d ⁵				
	9s 8d 7f 6g 9p		4s ²				
	Total electron 5 + 25 + 35 + 45 + 15 = 125 Ans.]		Electrons in s-subshell = 8]				