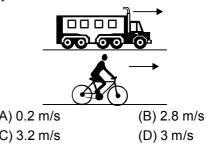
|    | JEE MAIN : CHAP<br>JECT :- PHYSICS                                                                                                                                                                                                                                                                                                       | ER WISE               | TEST PAPER-3<br>DATE                                                                                                                                                                                                                                                                                                |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | SS :- 11 <sup>th</sup>                                                                                                                                                                                                                                                                                                                   |                       | NAME                                                                                                                                                                                                                                                                                                                |
|    | PTER :- KINEMATICS                                                                                                                                                                                                                                                                                                                       |                       | SECTION                                                                                                                                                                                                                                                                                                             |
|    | <b> </b> S                                                                                                                                                                                                                                                                                                                               | CTION-A               |                                                                                                                                                                                                                                                                                                                     |
| 1. | A particle at a height 'h' from the ground<br>projected with an angle 30° from the horizon<br>it strikes the ground making angle 45° w<br>horizontal. It is again projected from the sam<br>point with the same speed but with an angle<br>60° with horizontal. Find the angle it makes w<br>the horizontal when it strikes the ground : | al,<br>th<br>ne<br>of | A car A is going North-East at 80 km/hr. and<br>another car B is going South-East at 60 km./hr.<br>Then the direction of the velocity of A relative to<br>B makes with the North and angle $\alpha$ such that<br>tan $\alpha$ is-<br>(A) $\frac{1}{7}$ (B) $\frac{3}{4}$ (C) $\frac{4}{3}$ (D) $\frac{3}{5}$        |
|    | (A) $\tan^{-1}(4)$ (B) $\tan^{-1}(5)$                                                                                                                                                                                                                                                                                                    |                       | 7 4 5 5                                                                                                                                                                                                                                                                                                             |
| 2. | (C) $\tan^{-1}(\sqrt{5})$ (D) $\tan^{-1}(\sqrt{3})$ A body dropped from the top of a tower cover7/16 of the total height in the last secondits fall. The time of fall is(A) 2 sec(B) 4 sec(C) 1 sec(D) $\left(\frac{50}{7}\right)$ sec                                                                                                   |                       | A stone is projected from ground and hits a smooth vertical wall after 1 sec. and again falls back on the ground. The time taken by stone to reach the ground after the collision is 3 secs. The maximum height reached by the same stone if the vertical wall were not to be present is. (g = $10 \text{ m/s}^2$ ) |
|    |                                                                                                                                                                                                                                                                                                                                          |                       |                                                                                                                                                                                                                                                                                                                     |
| 3. | A stone is dropped from a running bus. It will<br>the ground in a-<br>(A) Straight path (B) Circular path<br>(C) Parabolic path (D) None of these                                                                                                                                                                                        | hit<br>8.             | (A) 10 m (B) 12.5 m<br>(C) 15 m (D) 20 m<br>Two bodies, A (of mass 1kg) and B (of mass                                                                                                                                                                                                                              |
| 4. | A stone is projected from a horizontal plane. It<br>attains maximum height 'H' & strikes a<br>stationary smooth wall & falls on the ground<br>vertically below the maximum height. Assuming<br>the collision to be elastic the height of the point                                                                                       | lt<br>a<br>nd<br>ng   | 3kg) are dropped from heights of 16 m and 25 m, respectively. The ratio of the time taken by them to reach the ground is :<br>(A) 5/4 (B) 12/5 (C) 5/12 (D) 4/5                                                                                                                                                     |
|    | on the wall where ball will strike is                                                                                                                                                                                                                                                                                                    | 9.                    | A ship is travelling due east at 10 km/h. A ship<br>heading 30° east of north is always due north<br>from the first ship. The speed of the second<br>ship in km/h is -                                                                                                                                              |
|    | Н Н                                                                                                                                                                                                                                                                                                                                      |                       | (A) $20\sqrt{2}$ (B) $20\sqrt{3/2}$                                                                                                                                                                                                                                                                                 |
|    | (A) $\frac{H}{2}$ (B) $\frac{H}{4}$                                                                                                                                                                                                                                                                                                      |                       | (C) 20 (D) $20/\sqrt{2}$                                                                                                                                                                                                                                                                                            |
|    | (C) $\frac{3H}{4}$ (D) None of these                                                                                                                                                                                                                                                                                                     | 10.                   | If R and h represent the horizontal range and<br>maximum height respectively of an oblique<br>projection whose start point (i.e. point of                                                                                                                                                                           |
| 5. | The displacement x of a particle varies with till<br>t as x = $ae^{-\alpha t}$ + $be^{\beta t}$ , where a, b, $\alpha$ and $\beta$ are positive constants. The velocity of the parti-<br>will :                                                                                                                                          | re                    | projecteion) & end point are in same horizontal level. Then $\frac{R^2}{8h}$ + 2h represents                                                                                                                                                                                                                        |
|    | (A) go on decreasing with time<br>(B) be indepenent of $\alpha$ and $\beta$<br>(C) drop to zero when $\alpha = \beta$<br>(D) go on increasing with time                                                                                                                                                                                  |                       | <ul> <li>(A) maximum horizontal range</li> <li>(B) maximum vertical range</li> <li>(C) time of flight</li> <li>(D) velocity of projectile at highest point</li> </ul>                                                                                                                                               |

(D) go on increasing with time


(D) velocity of projectile at highest point

| 11. | When two particles each of mass m are dropped<br>from height h and 2h respectively, then the ratio<br>of their times to reach the ground is                                                                                                                                                                                                                                                          | 17.    | A particle moving with a uniform acceleration<br>travels 24 m and 64 m in the first two consecutive<br>intervals of 4 sec each. Its initial velocity is                                                                                                                                                                                                                                                                                                |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | (A) 1 : $\sqrt{2}$ (B) $\sqrt{2}$ : 1                                                                                                                                                                                                                                                                                                                                                                |        | (A) 1 m/sec (B) 10 m/sec                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | (C) 1 : 2 (D) 2 : 1                                                                                                                                                                                                                                                                                                                                                                                  |        | (C) 5 m/sec (D) 2 m/sec                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12. | A boat takes two hours to travel 8 km and back<br>in still water. If the velocity of water is 4 km/<br>h, the time taken for going upstream 8 km and<br>coming back is -<br>(A) 2h<br>(B) 2h 40 min<br>(C) 1h 20 min<br>(D) Cannot be estimated with the information<br>given                                                                                                                        | 18.    | A particle is thrown up inside a stationary lift of<br>sufficient height. The time of flight is T. Now it is<br>thrown again with same initial speed $v_0$ with<br>respect to lift. At the time of second throw, lift is<br>moving up with speed $v_0$ and uniform<br>acceleration g upward (the acceleration due to<br>gravity). The new time of flight is–<br>(A) $\frac{T}{4}$ (B) $\frac{T}{2}$ (C) T (D) 2T                                       |
| 13. | At the uppermost point of a projectile, its velocity and acceleration are at an angle of (A) 180° (B) 90° (C) 60° (D) 45°                                                                                                                                                                                                                                                                            | 19.    | The displacement of a body is given to be                                                                                                                                                                                                                                                                                                                                                                                                              |
| 14. | A car moving with a speed of 50 km/h, can be<br>stopped by brakes after at least 6m. If the same<br>car is moving at a speed of 100 km/h, the<br>minimum stopping distance is<br>(A) 12 m (B) 18 m (C) 24 m (D) 6 m                                                                                                                                                                                  |        | proportional to the cube of time passed. The<br>magnitude of the acceleration of the body, is<br>(A) Increasing with time<br>(B) Decreasing with time<br>(C) Constant but not zero<br>(D) Zero                                                                                                                                                                                                                                                         |
| 15. | Two observers A and B are moving opposite to<br>each other on a parallel track, separated by a<br>distance d, with same speed. When they are<br>at the shortest distance, a particle is thrown<br>horizontally from some height from ground by A<br>towards B with respect to itself. The path of the<br>particle observed by B is –<br>(A) Horizontal straight line.<br>(B) Vertical straight line. | 20.    | A cyclist observes a passenger in a bus. He<br>finds that the passenger closed his glass<br>window displacing 20 cm in forward direction<br>with constant speed in 1 sec. Bus overtakes<br>the cyclist in 3 sec. Initially he was at the middle<br>of the bus as shown in the figure. Length of the<br>bus is 18 m. Both cyclist and bus are moving<br>with constant speed in the same direction. Then<br>velocity of the glass window with respect to |
|     | <ul><li>(C) Straight line at some angle with the horizontal.</li><li>(D) Parabolic.</li></ul>                                                                                                                                                                                                                                                                                                        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 16. | The maximum range of a gun horizontal terrainis 10 km. If g = 10 m/s² what must be the muzzlevelocity of the shell(A) 400 m/s(B) 200 m/s(C) 100 m/s(D) 50 m/s                                                                                                                                                                                                                                        |        | (A) 0.2 m/s (B) 2.8 m/s<br>(C) 3.2 m/s (D) 3 m/s                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | (SECT                                                                                                                                                                                                                                                                                                                                                                                                | ION-B) |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 21. | A missile is fired for maximum range with an initial velocity of 20 m/s. If $g = 10 \text{ m/s}^2$ , the range of the missile is :                                                                                                                                                                                                                                                                   | 23.    | Two men P & Q are standing at corners A & B of square ABCD of side 8 m. They start moving along the track with constant speed 2 m/s and 10 m/s respectively. Find the time when they will meet for the first time.                                                                                                                                                                                                                                     |
| 22. | A car moves for half of its time at 80 km/h and<br>for rest half of time at 10 km/h. Total distance<br>covered is 60 km. What is the average speed<br>of the car                                                                                                                                                                                                                                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                      |        | PG #2                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

(A) 
$$\frac{T}{4}$$
 (B)  $\frac{T}{2}$  (C) T (D) 2T

- of a body is given to be cube of time passed. The celeration of the body, is ime

  - time t zero
- a passenger in a bus. He senger closed his glass 20 cm in forward direction d in 1 sec. Bus overtakes nitially he was at the middle in the figure. Length of the cyclist and bus are moving in the same direction. Then s window with respect to



PRERNA EDUCATION

- 24. The time of flight of a projectile is 10s and range is 500m. Maximum height attained by it is-[g = 10 m/s<sup>2</sup>]
- 25. A body dropped from a height h with initial velocity zero, strikes the ground with velocity 3 m/s. Another body of same mass is dropped from the height h with an initial velocity of 4 m/s. Find the final velocity with which it strikes the ground
- 26. A coin is released inside a lift at a height of 2 m from the floor of the lift. The height of the lift is 10 m. The lift is moving with an acceleration of  $9 \text{ m/s}^2$  downwards. The time after which the coin will strike with the lift is : (g = 10 m/s<sup>2</sup>)
- 27. The horizontal and verticle distances travelled by a particle in time t are given by x = 6t and  $y = 8t - 5t^2$ . If g = 10 m/sec<sup>2</sup>, then the initial velocity of the particle is-

- 28. A car moving with a speed of 40 km/hr can be stopped by applying breaks after atleast 2m. If the same car is moving with a speed of 80 km/h. What is the minimum stopping distance
- **29.** Rain is falling vertically with a velocity of 3 kmh<sup>-1</sup>. A man walks in the rain with a velocity of 4 kmh<sup>-1</sup>. The rain drops will fall on the man with a velocity of
- **30.** A projectile is thrown with velocity v making an angle  $\theta$  with the horizontal. It just crosses the top of two poles, each of height h, after 1 second and 3 second respectively. The time of flight of the projectile is