					MAIN A	NSWE	R KE	Y & S	SOLUT	IONS						
SUBJECT :- MATHEMATICS CLASS :- 12 th									PAPER CODE :- CWT-11							
		VECTO	R & 3D													
		0		•		ANSW			_	(4)	6		7	(\mathbf{A})		
1. 8.	(B) (D)	2. 9.	(B) (D)	3. 10.	(B) (A)	4. 11.	(B (C		5. 12.	(A) (C)	6. 13.	(D) (D)	7. 14.	(A) (C)		
15.	(D)	16.	(B)	17.	(B)	18.	(B		19.	(B)	20.	(C)	21.	7		
22. 29.	17 5	23. 30.	2 3	24.	1	25.	4		26.	58	27.	1	28.	3		
29.	5	30.	3			SOLU	JTIO	NS								
1.	(B)								Q =	$=\left(\frac{61}{7},\frac{-8}{7}\right)$	$\frac{3}{2}, \frac{-5}{-5}$					
	$\bigwedge^{A(3,2,0)}$															
Sol.								$PQ = \sqrt{\left(\frac{61}{7} - 3\right)^2 + \left(\frac{-8}{7} + 4\right)^2 + \left(\frac{-5}{7} + 5\right)^2}$								
001.	\mathbf{P} 3 13 C								. ~	\ (7	5) ((7)	(7)		
	$\begin{array}{c} B \xrightarrow{2} & 1 & 1 \\ (5,3,2) & D & (-9,6,-3) \end{array}$							$PQ = \frac{\sqrt{(40)^2 + (20)^2 + (40)^2}}{7}$								
	$AB = \sqrt{4+1+4} = 3$							rq - <u>7</u>								
	AC =	$AC = \sqrt{144 + 16 + 9} = 13$							PQ	$=\frac{60}{7}$						
	D(-)	27+65	18+39 _	-9+26						/						
	$D\left(\frac{-27+65}{3+13},\frac{18+39}{3+13},\frac{-9+26}{3+13}\right)$							3.	(B)							
	$=\left(\frac{19}{8}, \frac{57}{16}, \frac{17}{16}\right)$							0	\rightarrow	$\rightarrow \rightarrow$	2					
	(0	10 10)		Sol.		y+ z = 0										
2.	(B)	De						\Rightarrow y	$\rightarrow \rightarrow$ $\gamma + z = -$	$\overrightarrow{x} \Rightarrow \overrightarrow{y} $	$ \vec{z} ^2 = \vec{x} $	$ ^{2}$				
	(ii)								\rightarrow	$\overrightarrow{v}_{ 2}^{2} + \overrightarrow{z}_{ 2}^{2}$	$\frac{1}{ ^2+2v}$	$\overrightarrow{z} = \overrightarrow{x} ^2$	2			
	(i)									5111	1 5	$\cos \theta = 4$				
Sol.	Q // PQ = ?										1		+			
									\Rightarrow ($\cos \theta =$	$\frac{-1}{2} \Rightarrow \theta$	= 120°				
									\Rightarrow 0	\Rightarrow cosec ² θ + cot ² θ = $\frac{4}{2} + \frac{1}{2} = \frac{5}{2}$						
	2x + 5y - 6z = 16 (i)							3 3 3								
	$\frac{x}{2} = \frac{y}{1} = \frac{z}{-2}$ (ii)							4.	(B)							
	•	- 4, 5)						Sol.	(E	<u>, 2 , 2</u>)	$\frac{2}{\sqrt{2}}$	$(z^2 + z^2)^2$	$\left(\sqrt{-2} \right)$	$(\frac{1}{2})^{2}$		
	DR's of line (ii) = DR's of line PQ x^{-3} y^{+4} z^{-5}							501.	$(\sqrt{2})$	x + y)	+ (√у	+ z) -	$+ \left(\sqrt{2} + \right)$	x) =		
	Eq. of line PQ $\Rightarrow \frac{x-3}{2} = \frac{y+4}{1} = \frac{z-5}{-2} = \lambda$								36 ⇒2	$2(x^2 + v^2)$	$(+ z^2) =$	36				
	\therefore Coordinate of the point Q (3 + 2 λ , -4 + 2										z ² = 18					
	$5-2\lambda$) Put the coordinates of Q in eqn. (i) $\Rightarrow \lambda = ?$								⇒₁	$\sqrt{x^2 + v^2}$	$\overline{+z^2} = -$	$\sqrt{18} \Rightarrow$	OP = 3v	$\sqrt{2}$		
	distance between P & Q 2(2 + 2) + 5 (-4 + 2) = 6 (5 - 2) = 16								~ \			• - '				
	$2(3 + 2\lambda) + 5 (-4 + \lambda) - 6 (5 - 2\lambda) = 16$ 6 + 4\lambda - 20 + 5\lambda - 30 + 12\lambda = 16							5.	(A)		~		2 - 2	Λ		
	$\lambda = \frac{20}{7}$							Sol.	We	have s	$\sin \alpha = \frac{3}{5}$	- , cos β	$= \frac{2+2}{\sqrt{5}\sqrt{5}}$	$=\frac{4}{5}=\frac{4}{5}$ s		
	$Q = \left(\left(3 + \frac{40}{7}\right), \left(-4 + \frac{20}{7}\right), \left(5 - \frac{40}{7}\right) \right)$								So,	(cos ² c	α + sin ²	$\beta) = \frac{16}{25}$	$+\frac{9}{25}$	= 1. s		
	Q –	$\left(\left(\begin{array}{c} 3+ \end{array}{7} \right) \right)$			Ans			23	23							

1

6. (D)
Sol. Direction ratio's of normal of the plane are
< 2, 3, 4 >.
(A)
$$\frac{x-0}{-6} = \frac{y-1}{9} = \frac{z-0}{-3} = t$$
; Now, -6
(2) + 9 (3) - 3 (4) ≠ 0.
(B) $\frac{x+1}{1} = \frac{y-4}{1} = \frac{z-1}{3} = t$; Now, 1 (2)
+ 1 (3) + 3 (4) ≠ 0.
(C) $\frac{x-1}{2} = \frac{y-0}{-4} = \frac{z-0}{-1} = t$; Now, 2 (2)
+ 3 (3) - 1(4) ≠ 0.
(D) $\frac{x-1}{2} = \frac{y-4}{-4} = \frac{z-0}{2} = t$ Now, 2 (2) -
4 (3) + 2 (4) = 0.
7. (A)
Sol. Direction ratios of joining (-1,2,4) and (1, 0, 5)
are
1 + 1, 0 - 2, 5 - 4 = (2, -2, 1)
∴ D.C. of this line are
 $\ell = \frac{2}{\sqrt{4+4+1}} = 2/3$
m = $\frac{-2}{\sqrt{4+4+1}} = -2/3$
m = $\frac{-2}{\sqrt{4+4+1}} = 1/3$
∴ required projection
= $\left| (4-3)\frac{2}{3} + (6-4)(-2/3) + (3-5)\frac{1}{3} \right|$
= $\left| \frac{2}{3} - \frac{4}{3} - \frac{2}{3} \right| = 4/3$
{∵ projection of line joining (x_1, y_1, z_1) and
 $\left\{ (x_2, y_2, z_2)$ to the line whose dc's are ℓ , m, nis
 $\left| (x_2 - x_1)\ell + (y_2 - y_1)m + (z_2 - z_1)n \right|$
8. (D)
Sol. Here L₁ is parallel to $2\hat{1} + \hat{j} + 4\hat{k}$ and L₂ is
parallel to $4\hat{1} - 3\hat{j} + \hat{k} \Rightarrow L_1 \neq L_2$.
We have (Lines in parametric form) as
L₁ : x = 1+2s, y = -1 + s, z = 2 + 4s
and L₁ : x = -2 + 4t, y = -3t, z = -1 + t
∴ The lines intersect if there are s and t
for which
2s - 4t = -3(1)
s + 3t = 1(2)
Any solution of this system must
coorespond to a point of intersection of L₁
and L₂ are skew.
∴ From (1) and (2), we get
s = $\frac{-1}{2}$, t = $\frac{1}{2}$ s, which does not satisfy (3)
⇒ L₁ and L₂ are skew line.

9. (D) Sol. \therefore DR's of the normal of the plane \Rightarrow 2, -3, 6 &DR's of x-axis is 1, 0, 0 & If ' $\!\theta\!$ is the angle between the plane & x-axis, then $\sin \theta = \frac{2(1) + (-3)(0) + (6)(0)}{\sqrt{2^2 + (-3)^2 + 6^2}\sqrt{1}} =$ $\frac{2}{7}$ $\Rightarrow \theta = \sin^{-1}\left(\frac{2}{7}\right)$ $\therefore a = \frac{2}{7}$ 10. (A) Sol. Given line is $\Rightarrow \vec{r} = (2\hat{i} - 2\hat{j} + 3\hat{k}) + \lambda(\hat{i} - \hat{j} + 4\hat{k})$(i) \rightarrow

& r .(i +5j + k) = 5(ii)
By (i)
$$\Rightarrow \begin{cases} \overrightarrow{a} = (2\hat{i} - 2\hat{j} + 3\hat{k}) \\ \overrightarrow{b} = (\hat{i} - \hat{j} + 4\hat{k}) \end{cases}$$
By (ii)
$$\Rightarrow \overrightarrow{n} = (\hat{i} + 5\hat{j} + \hat{k})$$

$$\therefore \overrightarrow{b} \cdot \overrightarrow{n} = 0$$

Therefore, the line is parallel to the plane. Thus, the distance between the line & the plane is equal to the length of the

perpendicular from a point $\stackrel{\rightarrow}{a}$ = (2 \hat{i} – 2 \hat{j} +

 $3\,\hat{k}$) on the line to the given plane. Hence, the required distance

$$= \frac{\left|\frac{(2\hat{i} - 2\hat{j} + 3\hat{k}).(\hat{i} + 5\hat{j} + \hat{k}) - 5}{\sqrt{1 + 5^2 + 1}}\right|$$
$$= \frac{10}{3\sqrt{3}}$$

11. (C)

Sol. Line of shortest distance will be along

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{vmatrix} = -\hat{i} + 2\hat{j} - \hat{k}$$

$$\therefore x = (\hat{i} + 2\hat{j} + 2\hat{k}) \cdot \frac{(-\hat{i} + 2\hat{j} - \hat{k})}{\sqrt{6}} = \frac{1}{\sqrt{6}}$$
$$\Rightarrow \cos^{-1}(\cos\sqrt{6}x) = \cos^{-1}(\cos 1) = 1$$

12. (C) Sol. Equation of line passing through given point P and normal to given plane is $\vec{r} = (\hat{i}+3\hat{j}+4\hat{k}) + \lambda(2\hat{i}-\hat{j}+\hat{k})$ \Rightarrow Image point Q $\equiv ((1+2\lambda)\hat{i}+(3-\lambda)\hat{j}+(4+\lambda)\hat{k})$ Now mid point of $PQ = [(\lambda+1)\hat{i} + (3-\lambda/2)\hat{j} + (4+\lambda/2)\hat{k}]$ satisfies given plane that gives $\lambda = -2$ So position vector of image is $-3\hat{i}+3\hat{j}+2\hat{k}$ 13. (D) Let $|\vec{a}| = |\vec{b}| = |\vec{c}| = t$ Sol. from given equation, we have $(\vec{a} \cdot \vec{a}) (\vec{m} - \vec{b}) - \{\vec{a} \cdot (\vec{m} - \vec{b})\}\vec{a} + (\vec{b} \cdot \vec{b}) (\vec{a} - \vec{b})\}\vec{a}$ $\vec{m} - \vec{c}$) - { \vec{b} . ($\vec{m} - \vec{c}$)} \vec{b} + (\vec{c} . \vec{c}) ($\vec{m} - \vec{a}$) $-\{\vec{c} \cdot (\vec{m} - \vec{a})\} \cdot \vec{c} = 0$ $\Rightarrow |\vec{a}|^2 (\vec{m} - \vec{b}) + |\vec{b}|^2 (\vec{m} - \vec{c}) + |\vec{c}|^2 (\vec{m} - \vec{c})$ \vec{a}) - [(\vec{a} . \vec{m}) \vec{a} + (\vec{b} . \vec{m}) \vec{b} + (\vec{c} . \vec{m}) \vec{c}] + (\vec{a} $(\vec{b})\vec{a} + (\vec{b}\cdot\vec{c})\vec{b} + (\vec{c}\cdot\vec{a})\vec{c} = 0$ also \vec{a} . $\vec{b} = \vec{b}$. $\vec{c} = \vec{c}$. $\vec{a} = 0$ \Rightarrow t (3 $\vec{m} - \vec{a} - \vec{b} - \vec{c}$) – t² $\vec{m} = 0$ $\Rightarrow 2 \vec{m} = \vec{a} + \vec{b} + \vec{c} \Rightarrow \vec{m} = \frac{\vec{a} + \vec{b} + \vec{c}}{2}$ 14. (C) $\vec{a} + \vec{b} + \vec{c} + \vec{d} = (\alpha + 1) \vec{d} = (\beta + 1) \vec{a}$ Sol. $\Rightarrow \vec{d} = \frac{\beta + 1}{\alpha + 1} \vec{a}$ So $\vec{a} + \vec{b} + \vec{c} = \alpha \vec{d} = \alpha \left(\frac{\beta+1}{\alpha+1}\right) \vec{a}$ $\Rightarrow \vec{a} \left\{ 1 - \frac{\beta + 1}{\alpha + 1} \alpha \right\} + \vec{b} + \vec{c} = 0$ $\Rightarrow [\vec{a} \ \vec{b} \ \vec{c}] \neq 0 \Rightarrow \alpha = -1$ $\Rightarrow \vec{a} + \vec{b} + \vec{c} + \vec{d} = 0$ 15. (D) $\vec{x} \times \vec{a} + (\vec{x} \cdot \vec{b})\vec{c} = \vec{d}$ Sol. $\therefore \{\vec{x} \times \vec{a} + (\vec{x} \cdot \vec{b})\vec{c}\} \times \vec{c} = \vec{d} \times \vec{c}$ or $(\vec{x} \times \vec{a}) \times \vec{c} + (\vec{x} \cdot \vec{b}) (\vec{c} \times \vec{c}) = \vec{d} \times \vec{c}$ $= (\vec{x} \cdot \vec{c})\vec{a} - (\vec{a} \cdot \vec{c})\vec{x} = (\vec{d} \times \vec{c})$ $\vec{a} \times \{(\vec{x} \cdot \vec{c}) \vec{a} - (\vec{a} \cdot \vec{c}) \vec{x}\} = \vec{a} \times (\vec{d} \times \vec{c})$ $= - (\vec{a} \cdot \vec{c}) (\vec{a} \times \vec{x}) = \vec{a} \times (\vec{d} \times \vec{c})$ 3

$$\therefore \vec{a} \times \vec{a} = 0$$

$$\vec{x} \times \vec{a} = \frac{\vec{a} \times (\vec{d} \times \vec{c})}{\vec{a}.\vec{c}}$$

$$\vec{a} \times (\vec{x} \times \vec{a}) = \vec{a} \times \frac{\vec{a} \times (\vec{d} \times \vec{c})}{\vec{a}.\vec{c}}$$

$$(\vec{a} \cdot \vec{a}) \vec{x} - (\vec{a} \cdot \vec{x}) \vec{a} = \vec{a} \times \frac{\vec{a} \times (\vec{d} \times \vec{c})}{\vec{a}.\vec{c}}$$

$$\vec{a}^2 \vec{x} = (\vec{a} \cdot \vec{x}) \vec{a} + \vec{a} \frac{\vec{a} \times (\vec{d} \times \vec{c})}{\vec{a}.\vec{c}}$$

$$\vec{x} = \frac{(\vec{a}.\vec{x})\vec{a}}{\vec{a}^2} + \vec{a} \times \frac{\vec{a} \times (\vec{d} \times \vec{c})}{(\vec{a}.\vec{c})\vec{a}^2}$$

$$\vec{x} = \lambda \vec{a} + \vec{a} \times \frac{\vec{a} \times (\vec{d} \times \vec{c})}{(\vec{a}.\vec{c})\vec{a}^2} \Rightarrow \lambda = \frac{\vec{a}.\vec{x}}{\vec{a}^2}$$
(B)
$$\vec{d} \times \vec{b} = \vec{c} \times \vec{b}$$

$$\Rightarrow (\vec{d} \cdot \vec{c}) \times \vec{b} = 0$$

$$\Rightarrow (\vec{d} - \vec{c}) \times \vec{b} = 0$$

$$\Rightarrow \vec{d} = \vec{c} + \lambda \vec{b}$$

$$\Rightarrow \vec{d} = (7 + \lambda) \hat{i} + (-3 + \lambda) \hat{j} + (4 + \lambda) \hat{k}$$

$$\Rightarrow \vec{a} \cdot \vec{d} = 0$$

$$\Rightarrow 7 + \lambda + 2(4 + \lambda) = 0 \Rightarrow \lambda = -5$$

So $\vec{d} = 2\hat{i} - 8\hat{j} - \hat{k}$

16.

Sol.

Sol.
$$\vec{b}$$
 perpendicular $\vec{c} \Rightarrow \vec{b} \cdot \vec{c} = 0$
 $\Rightarrow \tan^2 \alpha - \tan \alpha - 6 = 0$
 $\Rightarrow \tan \alpha = 3, -2$
also \vec{a} make an obtuse angle with z- axis
therefore $\vec{a} \cdot \hat{k} < 0 \Rightarrow \sin 2\alpha < 0$
if $\tan \alpha = 3$ then $\sin 2\alpha = \frac{2 \tan \alpha}{1 + \tan^2 \alpha} = \frac{4}{3} > 0$
Now $\tan 2\alpha > 0$, $\sin 2\alpha < 0 \Rightarrow \alpha \in \text{third}$
quadrant and $\tan \alpha = -2$
 $\Rightarrow \tan (\pi - \alpha) = 2 \Rightarrow \alpha = (2n + 1) \pi - \tan^{-1} 2$, $n \in I$

Sol.
$$\vec{c} = \lambda(\vec{a} \times \vec{b})$$

$$1 = (\vec{a} \times \vec{b}) \cdot \vec{c} = \frac{\vec{c} \cdot \vec{c}}{\lambda} = \frac{|\vec{c}|^2}{\lambda} = \frac{1}{3\lambda} \Longrightarrow \lambda = \frac{1}{3}$$
$$\vec{c}^2 = \lambda^2 (\vec{a} \times \vec{b})^2$$
$$\frac{1}{3} = \frac{1}{9} = (a^2 b^2 \sin^2 \theta) = \frac{1}{9} \times 2 \times 3 \sin^2 \theta$$
$$\Longrightarrow \sin^2 \theta = \frac{1}{2} \therefore \theta = \frac{\pi}{4}$$

19. (B)
Sol. Let
$$\vec{a} = \lambda \vec{b} + \mu \vec{c}$$

then $\frac{\vec{a}.\vec{b}}{ab} = \frac{\vec{a}.\vec{d}}{ad}$
i.e. $\frac{(\lambda \vec{b} + \mu \vec{c}).\vec{b}}{b} = \frac{(\lambda \vec{b} + \mu \vec{c}).\vec{d}}{d}$
i.e. $\frac{[\lambda(2\hat{i} + \hat{j}) + \mu(\hat{i} - \hat{j} + \hat{k})].(2\hat{i} + \hat{j})}{\sqrt{5}}$
 $= \frac{[\lambda(2\hat{i} + \hat{j}) + \mu(\hat{i} - \hat{j} + \hat{k})].(\hat{j} + 2\hat{k})}{\sqrt{5}}$
i.e. $\lambda (4 + 1) + \mu(2 - 1) = \lambda(1) + \mu(-1 + 2)$
i.e. $4\lambda = 0$ i.e. $\lambda = 0$
 $\therefore \vec{a} = \frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}}$
20. (C)
Sol. We have $\begin{vmatrix} 2 & 3 & 4 \\ 1 & \alpha & 2 \\ 1 & 2 & \alpha \end{vmatrix} \end{vmatrix} = 15$

 $\Rightarrow | 2 (\alpha^2 - 4) + 3(2 - \alpha) + 4 (2 - \alpha) | = 15$ $\Rightarrow |2\alpha^2 - 7\alpha + 6| = 15$ $\Rightarrow \text{Either} (2\alpha^2 - 7\alpha + 6) = 15 \text{ or } (2\alpha^2 - 2\alpha)$ $7\alpha + 6) = -15$ So, either $(2\alpha^2 - 7\alpha - 9) = 0 = (\alpha + 1) (2\alpha)$ - 9) $\therefore \alpha = -1, \frac{9}{2} \text{ or } 2\alpha^2 - 7\alpha + 21 = 0$ has non-real roots as discriminant is negative. Hence $\alpha = \frac{9}{2}$. Ans.

7

Sol.
$$\frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2} = \lambda$$

$$\begin{array}{c} P(1, 2, 3) \\ P(1,$$

22. 17
Sol. Mid point of BC is
$$\left(\frac{\lambda-1}{2}, 4, \frac{2+\mu}{2}\right)$$

DR's of median through A are -

$$A^{(2,3,5)}$$

$$B^{(-1,3,2)}$$

$$C(\lambda,5,\mu)$$

$$\frac{\lambda-1}{2} - 2, 4 - 3, \frac{2+\mu}{2} - 5$$
i.e. $\frac{\lambda-5}{2}, 1, \frac{\mu+8}{2}$
The medium is equally inclined to axes,
 \therefore D.R's must be
equal $\frac{\lambda-5}{2} = 1 = \frac{\mu+8}{2} \Rightarrow \lambda = 7$ and $\mu = 10$
23. 2
Sol. Here d₁ = d cos (90° - α), d₂ = d cos
(90° - β) and d₃ = d cos (90° - γ)
d₁ = d sin α , d₂ = d sin β , d₃ = d sin γ
 $\Rightarrow d_1^2 + d_2^2 + d_3^2 = kd^2$
 $\Rightarrow d^2 (sin^2 \alpha + sin^2 \beta + sin^2 \gamma) = kd^2$
 $\therefore k = 2$.
24. 1
Sol. Let the vertices A, B, C, D quadrilateral
be
(x₁, y₁, z₁), (x₂, y₂, z₂), (x₃, y₃, z₃) & (x₄, y₄,
z₄) and the equation of plane PQRS be
 $u = ax + b_1 + c_2 + d = 0$
let $u_r = a_x + b_r y + c_z + d$ where $r = 1, 2, 3, 4$
Then $\frac{AP}{PB} \cdot \frac{BQ}{QC} \cdot \frac{CR}{RD} \cdot \frac{DS}{SA}$
 $= \left(-\frac{u_1}{u_2}\right) \left(-\frac{u_2}{u_3}\right) \left(-\frac{u_3}{u_4}\right) \left(-\frac{u_4}{u_1}\right) = 1$.
25. 4
Sol. Point (3, 2, 1) & (2, -3, -1)
lies on 11x + my + nz = 28
 $i.e., 33 + 2m + n = 28$
 $\Rightarrow 2m + n = -5$ (1)
and 22 - 3m - n = 28

 \Rightarrow –3m – n = 6

From (1) and (2) m = –1 & n = –3. |m + n| = |-1-3| = 4 μ=

PRERNA EDUCATION

4

... (2)

26. 58 Sol. Since, both the planes are parallel P_1 : 4x - 6y + 12z + 10 = 0 P_2 : 4x - 6y + 12z + d = 0 b = -6, c = 12Now, $\left| \frac{d - 10}{2\sqrt{4 + 9 + 36}} \right| = 3$ $|d - 10| = 42 \implies d = 52 \text{ or} - 32$ \therefore P₂ is 4x - 6y + 12z + 52 = 0 4x - 6y + 12z - 32 = 0or ∵ Point (-3, 0, -1) is lying between planes P₁ and P₂ ... On substituting the point in the equation of the planes both expressions must be of opposite sign. From P₁: $4 \times (-3) - 6 \times 0 + 12 (-1)$ + 10= -ve From P₂: $4 \times (-3) - 6 \times 0 + 12 (-1)$ + 52 = +ve : d must be 52 Hence, (b + c + d) = -6 + 12 + 52 = 58Ans. 1

27.

Sol. The vectors are coplanar if we can find two scalars λ , μ such that $\vec{x}_i + \vec{j} + \vec{k} = \lambda (\vec{i} + y\vec{j} + \vec{k}) + \mu (\vec{i} + \vec{j} + z\vec{k})$ \Rightarrow x = λ + μ , 1 = λ y + μ , 1 = λ + μ z $\therefore 1 - x = 1 - \lambda - \mu, y = \frac{1 - \mu}{\lambda}, z = \frac{1 - \lambda}{\mu}$ \therefore 1 – y = $\frac{\lambda - 1 + \mu}{\lambda}$ and 1 – z = $\frac{\mu - 1 + \lambda}{\mu}$ $\therefore \frac{1}{1-x} + \frac{1}{1-y} + \frac{1}{1-z}$ $= \frac{1}{1-\lambda-\mu} + \frac{\lambda}{\lambda+\mu-1} + \frac{\mu}{\lambda+\mu-1}$ $=\frac{1-\lambda-\mu}{1-\lambda-\mu}=1.$

28. 3

Sol. If two vectors are perpendicular then cos θ=0 $\therefore a_1 b_1 + a_2 b_2 + a_3 b_3 = 0$ 2(4) + P(-2) + 2(-1) = 08 - 2P - 2 = 0-2P = -6P = 3

29.

5

Sol. The line contained by the planes is along the vector $(2\hat{i}+\hat{j})\times(\hat{i}-\hat{j}+\hat{k}) = \hat{i}-2\hat{j}-3\hat{k}$ Since it is parallel to the plane kx + y + z+ 2 = 0, so $k(1) + 1(-2) + 1(-3) = 0 \Rightarrow k = 5$. Ans.

30.

3

Sol. Given that
$$\vec{a} + k_1 \vec{b} + k_2 \vec{c} = \vec{0}$$

$$\overrightarrow{b} - \overrightarrow{a} \qquad \overrightarrow{O(0)} \qquad \overrightarrow{R(c)}$$

$$Q(\vec{b}) \qquad R(\vec{c})$$
Now, $\frac{\text{Area}(\Delta PQR)}{\text{Area}(\Delta OQR)}$

$$= \frac{\frac{1}{2} \left| \left(\vec{b} - \vec{a} \right) \times \left(\vec{c} - \vec{a} \right) \right|}{\frac{1}{2} \left| \left(\vec{b} \times \vec{c} \right) \right|} = 4$$

$$\Rightarrow \frac{\left| \left\{ (1 + k_1) \vec{b} + k_2 \vec{c} \right\} \times \left\{ k_1 \vec{b} + (1 + k_2) \vec{c} \right\} \right|}{\left| \vec{b} \times \vec{c} \right|} = 4$$

$$\Rightarrow (1 + k_1) (1 + k_2) - k_1 k_2 = 4$$
Hence, $k_1 + k_2 = 3$. Ans.