

 \blacksquare

- **14.** If $\vec{a} + \vec{b}$ $\overline{ }$ + $\vec{c} = \alpha \vec{d}$ \overline{a} , b $\overline{ }$ $+\vec{c} + \vec{d}$ \overline{a} $= \beta \vec{a}$ and $[\vec{a} \vec{b}]$ $\overline{ }$ \vec{c}] \neq 0 then \vec{a} + \vec{b} \overline{a} $+ \vec{c} + \vec{d}$ \overline{a} equals - (A) α \ddot{a} (B) β b \overline{a} (C) 0 $(D) (\alpha + \beta)^{\vec{C}}$ **15.** If the vector \vec{x} satisfying $\vec{x} \times \vec{a}$ $+$ ($\vec{x} \cdot \vec{b}$) \overline{a} \overline{c} = d \overline{a} given by $\vec{x} = \lambda \vec{a} + \vec{a}$ $\times \frac{a \wedge (a \wedge b)}{(\vec{a}.\vec{c})a^2}$ $\vec{a} \times (d \times \vec{c})$ $\frac{1}{2}$ $\frac{\vec{a} \times (\vec{d} \times \vec{c})}{\vec{a} + \vec{b}}$, then $\lambda =$ (A) $\frac{a}{a^2}$ $\vec{a}.\vec{c}$ (B) $\frac{a}{b^2}$ $\vec{a}.\vec{b}$ (C) $\frac{c}{c^2}$..
c.d (D) $\frac{a}{a^2}$ $\vec{a}.\vec{x}$ **16.** a \overline{a} $= \hat{i} + 2\hat{k}$, \vec{b} \overline{a} $= \hat{i} + \hat{j} + \hat{k}$, \vec{c} $= 7\hat{i} - 3\hat{j} + 4\hat{k}$, then the vector d \overline{a} satisfies the relation d \overline{a} × b \overline{a} $= \vec{c} \times \vec{b}$ \overline{a} , a . d $\overline{}$ = 0 is given by – (A) $2\hat{i} + 4\hat{j} + \hat{k}$ (B) $2\hat{i} - 8\hat{j} - \hat{k}$ (C) $2\hat{i} + 5\hat{j} + 2\hat{k}$ (D) None of these **17.** If the vectors b \overline{a} $=$ $\left[\tan \alpha, -1, 2\sqrt{\tan \frac{\alpha}{2}}\right]$ J λ $\overline{}$ ∖ $\int \tan \alpha, -1, 2, \int \tan \frac{\alpha}{2}$ $\tan \alpha, -1, 2\sqrt{\tan \frac{\alpha}{2}}$, $\vec{c} =$ $\overline{}$ $\overline{\mathcal{L}}$ $\overline{\mathcal{L}}$ $\overline{}$ J \backslash $\overline{}$ $\overline{}$ $\overline{}$ I \backslash ſ α α , tan α , $\frac{-1}{\sqrt{2\pi}}$ $\sin \frac{\alpha}{2}$ $\tan \alpha$, $\tan \alpha$, $\frac{-3}{\sqrt{2\pi}}$ are orthogonal and vector \vec{a} = (1, 3, sin 2 α) makes an obtuse angle with z - axis then α equals: **(SECTION B) 21.** The length of perpendicular drawn from (1, 2, 3) to the line $\frac{x}{3} = \frac{y}{2} = \frac{z}{-2}$ $z-7$ 2 $y-7$ 3 $x-6$ \overline{a} $\frac{-6}{2} = \frac{y-7}{2} = \frac{z-7}{2}$ is **22.** ABC is a triangle $A = (2, 3, 5), B = (-1, 3, 5)$ 2) and C = $(\lambda, 5, \mu)$. If the median through A is equally inclined to the axes, then $\lambda + \mu$ $= 17$
- **23.** The distance between two points P and Q is d and the length of their projections of PQ on the coordinate planes are d_1 , d_2 , d_3 . Then $d_1^2 + d_2^2 + d_3^2 = Kd^2$ where K is –

PRERNA EDUCATION https://prernaeducation.co.in 011-41659551 || 9312712114

s

- (A) $(2n +1)\pi$ + tan⁻¹ 2 (B) $(2n + 1)\pi$ – tan⁻¹2 (C) $n\pi - \tan^{-1} 2$ (D) None of these
- **18.** If $\vec{a}, \vec{b}, \vec{c}$ are such that $[\vec{a}, \vec{b}, \vec{c}]$ = 1, $\vec{c} = \lambda(\vec{a} \times \vec{b}),$ 3 $\vec{a} \wedge \vec{b} < \frac{2\pi}{3}$, and $|\vec{a}| = \sqrt{2}$, $|\vec{b}|$ \rightarrow = 3 $\overline{3}, |\vec{c}| = \frac{1}{\sqrt{2}}$, then the angle between \vec{a} and b \overline{a} is (A) 6 $\frac{\pi}{4}$ (B) 4 $\frac{\pi}{4}$ (C) 3 $\frac{\pi}{2}$ (D) 2 π

19. A unit vector a in the plane $\vec{b} = 2\hat{i} + \hat{j}$ and $\vec{c} = \hat{i} - \hat{j} + \hat{k}$ is such that $\vec{a}^\wedge \vec{b} = \vec{a}^\wedge \vec{d}$ where $\vec{d} = \hat{j} + 2\hat{k}$ is (A) 3 $\hat{i} + \hat{j} + \hat{k}$ (B) 3 $\hat{i} - \hat{j} + \hat{k}$ (C) 3 $2\hat{i} + \hat{j}$ (D) 5 $2\hat{i} + \hat{j}$

20. sFor α > 0, let the volume of parallelopiped whose adjacent edges are $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$, $\vec{b} = \hat{i} + \alpha \hat{j} + 2\hat{k}$, $\vec{c} = \hat{i} + 2\hat{j} + \alpha \hat{k}$ s is 15, then the value of α is equal to (A) $\frac{5}{5}$ 2 (B) $\frac{7}{5}$ 2

(C) $\frac{9}{2}$ 2 (D) $\frac{13}{2}$ 2

24. P, Q, R, S are four coplanar points on the sides AB, BC, CD, DA of a skew quadrilateral. The product $\frac{1}{PB}$ $\frac{AP}{BP}$. QC BQ
QC · RD $\frac{CR}{PR}$. SA $\frac{\text{DS}}{\text{S}}$ equals –

25. The plane containing the two lines $\frac{4}{1}$ $\frac{x-3}{1}$

> 4 $\frac{y-2}{4} = \frac{z-5}{5}$ $\frac{z-1}{5}$ and $\frac{x-1}{1}$ $\frac{x-2}{1} = \frac{y+2}{-4}$ $y+3$ \overline{a} $\frac{+3}{-4} = \frac{z+3}{5}$ $\frac{z+1}{z}$ is

11x + my + nz = 28 then $|m + n|$ is eqyal to

PG #2

- **26.** If distance between two non-intersecting planes P_1 and P_2 is 3 units, where P_1 is 2x $-3y + 6z + 5 = 0$ and P₂ is 4x + by + cz + $d = 0$ and point A $(-3, 0, -1)$ is lying between the planes P_1 and P_2 then the value of $(b + c + d)$, is equal to
- **27.** If $xi + j + k$.
11 $+ j + k$, $i + yj + k$.
133 $+ yj+k$ and $i + j + zk$.
11 $+ j + zk$ are coplanar where $x \ne 1$, $y \ne 1$, $z \ne 1$ then value of $\frac{1}{1-x}$ 1 $\frac{1}{-x}$ + $1 - y$ 1 $\frac{1}{-y}$ + $\frac{1}{1-z}$ 1 $\frac{1}{-z}$ is -
- **28.** If($2\hat{i} + P\hat{j} + 2\hat{k}$) is perpendicular to $(\hat{4i-2j}\tilde{-k})$ then value of P is
- **29.** If the line $2x + y = 0 = x y + z$ is parallel to the plane $kx + y + z + 2 = 0$ then the value of k is equal to
- **30.** If O (origin) is a point inside the triangle PQR such that $\overrightarrow{OP} + k_1 \overrightarrow{OQ} + k_2 \overrightarrow{OR} = 0$ s, where k_1 , k_2 are constants such that (ΔPQR) $(\triangle OQR)$ $\frac{\text{Area}(\Delta PQR)}{\text{Area}(\Delta OQR)} = 4$ $\frac{\Delta PQR)}{\Delta OQR}$ = 4, then the value of k₁ + $k₂$ is

