JEE MAIN : CHAPTER WISE TEST-11								
SUBJECT :- MATHEMATICS			DATE					
CLASS :- 12 th			NAME					
CHAPTER :- VECTOR & 3D SECTION								
1.	The points (3, 2, 0), (5, 3, 2) and (-9, 6, - 3), are the vertices of a triangle ABC. AD is the internal bisector of \angle BAC which meets BC at D, then the co-ordinates of D,	8.	Let L_1 : $\vec{r} = \hat{i} - \hat{j} + 2\hat{k} + s(2\hat{i} + \hat{j} + 4\hat{k})$ and L_2 $\vec{r} = -2\hat{i} - \hat{k} + t(4\hat{i} - 3\hat{j} + \hat{k})$ be two lines in R ² then (A) L_1 and L_2 are intersecting lines at					
	are (A) $\left(\frac{17}{16}, \frac{57}{16}, \frac{19}{8}\right)$ (B) $\left(\frac{19}{8}, \frac{57}{16}, \frac{17}{16}\right)$ (C) $\left(0, 0, \frac{17}{16}\right)$ (D) $\left(\frac{17}{16}, 0, 0\right)$		unique point. (B) L_1 and L_2 are parallel lines with n intersecting point. (C) L_1 and L_2 are coincident lines. (D) L_1 and L_2 are skew lines.					
2.	The distance of the point $(3, -4, 5)$ from the plane $2x + 5y - 6z = 16$ measured parallel to the line $x = y = \frac{z}{2}$ must be equal to -	9.	The plane $2x - 3y + 6z - 11 = 0$ makes a angle $\sin^{-1}(a)$ with the x-axis. Then th value of 'a' is : (A) $\frac{\sqrt{3}}{2}$ (B) $\frac{\sqrt{2}}{3}$ (C) $\frac{3}{7}$ (D) $\frac{2}{7}$					
	$\frac{1}{2} = \frac{1}{1} = \frac{1}{-2}$ (a) $\frac{30}{7}$ (b) $\frac{60}{7}$ (c) $\frac{60}{11}$ (d) $\frac{30}{11}$	10.	The distance between the line $\vec{r} = (2\hat{i} - \hat{j} + 3\hat{k}) + \lambda(\hat{i} - \hat{j} + 4\hat{k})$ & the plane \vec{r} . (\hat{i}					
3.	If $x + y + z = 0$, $ x = y = z = 2$ and θ is angle between y and z. then the value of $\csc^2\theta + \cot^2\theta$ is equal to (A) 4/3 (B) 5/3 (C) 1/3 (D) 1		$5\hat{j} + \hat{k}) = 5 \text{ is }:$ (A) $\frac{10}{3\sqrt{3}}$ (B) $\frac{10}{3}$					
4.	If the sum of the squares of the distance of a point from the three co-ordinate axes be 36, then its distance from the origin is	11.	(C) $\frac{10}{9}$ (D) None of these If the shortest distance between the lin $\vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda_1(2\hat{i} + 3\hat{j} + 4\hat{k})$ and					
_	(A) 6 (B) $3\sqrt{2}$ (C) $2\sqrt{3}$ (D) None of these		$\vec{r} = (2\hat{i} + 4\hat{j} + 5\hat{k}) + \lambda_2(3\hat{i} + 4\hat{j} + \hat{k})$ is x, the $\cos^{-1}(\cos\sqrt{6}x)$ is equal to -					
э.	if acute angle between the line $\vec{r} = \hat{i} + 2\hat{j} + \lambda(4\hat{i} - 3\hat{k})$ and xy plane is α and acute angle between the planes x + $2y = 0$ and $2x + y = 0$ is β then $(\cos^2 \alpha + \sin^2 \beta)$ equals (A) 1 (B) $\frac{1}{4}$ (C) $\frac{2}{3}$ (D) $\frac{3}{4}$	12.	(A) $1/2$ (B) 0 (C) 1 (D) 2 The image of the point having the positio vector $\hat{i}+3\hat{j}+4\hat{k}$ in the plane \vec{r} $(2\hat{i}-\hat{j}+\hat{k}) + 3 = 0$ is (A) $3\hat{i}+2\hat{j}+\hat{k}$ (B) $3\hat{i}+5\hat{j}+2\hat{k}$					
6.	Which one of the following lines is parallel to the plane $2x + 3y + 4z + 1 = 0$? (A) $x = -6t$; $y = 1 + 9t$; $z = -3t$ (B) $x = -1 + t$; $y = 4 + t$; $z = 1 + 3t$ (C) $x = 1 + 2t$; $y = 3t$; $z = 2 - t$ (D) $x = 1 + 2t$; $y = 4 - 4t$; $z = 2t$	13.	(C) $-3\hat{i}+5\hat{j}+2\hat{k}$ (D) $3\hat{i}+2\hat{j}-5\hat{k}$ Let \vec{a} , \vec{b} , \vec{c} are 3 vectors mutuall perpendicular such that $ \vec{a} = \vec{b} = \vec{c} $. a vector \vec{m} satisfies the equation:					
7.	The projection of line joining (3,4,5) and (4,6, 3) on the line joining (-1, 2, 4) and (1, 0, 5) : (A) 4/3 (B) 2/3 (C) 8/3 (D) 1/3		$a \times [(\vec{m} - \vec{b}) \times \vec{a}] + b \times [(\vec{m} - \vec{c}) \times \vec{b}] + \vec{c} = [(\vec{m} - \vec{a}) \times \vec{c}] = 0, \text{ then vector } \vec{m} \text{ equals-}$ (A) $\vec{a} + \vec{b} + \vec{c}$ (B) $\vec{a} + \vec{b} - \vec{c}$ (C) $\vec{a} - \vec{b} + \vec{c}$ (D) None of these					
		- \ \	BG #1					

14.	If $\vec{a} + \vec{b} + \vec{c} = \alpha \vec{d}$, $\vec{b} + \vec{c} + \vec{d} = \beta \vec{a}$ and $[\vec{a} \ \vec{b} + \vec{c}] \neq 0$ then $\vec{a} + \vec{b} + \vec{c} + \vec{d}$ equals -			(A) (2n +1)π + tan ⁻	¹ 2	
				(B) $(2n + 1)\pi$ - tan ⁻¹ 2 (C) $n\pi$ - tan ⁻¹ 2		
				(D) None of these		
	(A) α a (B) β	b → [→]		-	-	
	(C) 0 (D) (c	$(\alpha + \beta)^{c}$ 1	18.	$ f\vec{a}, b, \vec{c} $ are suc	h that $[\vec{a}, \vec{b}, \vec{c}] = 1$,	
15.	If the vector \vec{x} satisfying $\vec{x} \times \vec{a} + (\vec{x} \cdot \vec{b})\vec{c}$ = \vec{d} given by $\vec{x} = \lambda \vec{a} + \vec{a} \times \frac{\vec{a} \times (\vec{d} \times \vec{c})}{(\vec{a} \cdot \vec{c})a^2}$,			$\vec{c} = \lambda(\vec{a} \times \vec{b}), \ \vec{a} \wedge \vec{b} <$	$(\frac{2\pi}{3}, \text{ and} \vec{a} = \sqrt{2}, \vec{b} =$	
				$\sqrt{3}$, $ \vec{c} = \frac{1}{\sqrt{3}}$, then	n the angle between \vec{a}	
	then λ =			and \vec{b} is		
	(A) $\frac{\vec{a}.\vec{c}}{a^2}$ (B) $\frac{\vec{a}}{b}$	$\frac{\vec{b}}{\vec{b}^2}$		(A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$	(C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$	
	(C) $\frac{\vec{c}.\vec{d}}{c^2}$ (D) $\frac{\vec{a}}{a}$	$\frac{1}{n^2}$	19.	A unit vector \vec{a} in	the plane $\vec{b} = 2\hat{i} + \hat{j}$ and	
		-		$\vec{c} = \hat{i} - \hat{j} + \hat{k}$ is such	h that $\vec{a}^{\wedge}\vec{b} = \vec{a}^{\wedge}\vec{d}$ where	
16. 17.	$\vec{a} = \hat{i} + 2\hat{k}, \ \vec{b} = \hat{i} + \hat{j} + \hat{k}, \ \vec{c} = 7\hat{i} - 3\hat{j} + 4\hat{k},$			$\vec{d} = \hat{j} + 2\hat{k}$ is		
	then the vector \vec{d} satisfies the	e relation $\vec{d} \times$		$\hat{i} + \hat{j} + \hat{k}$	$(\mathbf{p}) \hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}$	
	$\vec{b} = \vec{c} \times \vec{b}$, $\vec{a} \cdot \vec{d} = 0$ is given	by –		(A) $\frac{1}{\sqrt{3}}$	(B) $\frac{1}{\sqrt{3}}$	
	(A) $2\hat{i} + 4\hat{j} + \hat{k}$ (B) 2	<mark>i – 8 j – k</mark>		(C) $\frac{2\hat{i}+\hat{j}}{\hat{j}}$	(D) $\frac{2\hat{i}+\hat{j}}{\hat{j}}$	
	(C) $2\hat{i} + 5\hat{j} + 2\hat{k}$ (D) N	one of the <mark>se</mark>		$\sqrt{3}$	$\sqrt{5}$	
		2	20.	s For $\alpha > 0$.	let the volume of	
	If the vectors $\vec{b} = (\tan \alpha, -1, 2, \sqrt{\tan \frac{\alpha}{2}}), \vec{c} =$	$\tan \frac{\alpha}{2}$, $\vec{c} =$	20.	parallelopiped who	ose adjacent edges are	
		V 2)		$\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k} ,$	$\vec{b} = \hat{i} + \alpha \hat{j} + 2\hat{k}$,	
				$\vec{c} = \hat{i} + 2\hat{j} + \alpha\hat{k} \mathbf{s}$	is 15, then the value	
	$\tan \alpha, \tan \alpha, \frac{-3}{\sqrt{\alpha}}$ are orth	nogonal and		of α is equal to	7	
	$\sqrt{\frac{\sin 2}{2}}$			(A) $\frac{3}{2}$	(B) $\frac{7}{2}$	
	vector \vec{a} = (1, 3, sin 2 α) mak	es an obtuse		(C) $\frac{9}{7}$	(D) $\frac{13}{13}$ s	
	angle with z- axis then α equa	als:		2	2	
		(SECTION)	B)			
21.	The length of perpendicular d	rawn from (1, 2	24.	P, Q, R, S are fou	r coplanar points on the	
	2 3) to the line $\frac{x-6}{z-7} = \frac{y-7}{z-7} = \frac{z-7}{z-7}$ is	$\frac{z-7}{z-7}$ is		sides AB, BC,	CD, DA of a skew	
	2, 0) to the line 3 2	-2		quadrilateral. The	product $\frac{AP}{AP}$, $\frac{BQ}{BQ}$, $\frac{CR}{CR}$.	
ว ว	ABC is a triangle $\Lambda = (2, 3, 5)$	() R - (1.3)		1	PB QC RD	
22.	Abc is a triangle A – (2, 3, 3 2) and C = (λ , 5,). If the me	(-1, 3)		$\frac{\text{DS}}{\text{CA}}$ equals –		
	A is equally inclined to the ax	(es then λ+μ		SA		
	= 17				2	
		2	25.	The plane contain	ing the two lines $\frac{x-3}{1}$ =	
23.	The distance between two po	ints P and Q		v-2 z-1	x-2 $y+3$ $z+1$	
	IS d and the length of their p PQ on the coordinate planes	projections of		$\frac{5}{4} = \frac{2}{5}$ and	$\frac{-}{1} = \frac{5 \cdot c}{-4} = \frac{2 \cdot 1}{5}$ is	
	Then $d_1^2 + d_2^2 + d_3^2 = Kd^2$ when	e K is –		11x + my + nz = 28	3 then m + n is eqyal to	
	1 2 3 -					
					PG #2	

https://prernaeducation.co.in

- 26. If distance between two non-intersecting planes P_1 and P_2 is 3 units, where P_1 is 2x 3y + 6z + 5 = 0 and P_2 is 4x + by + cz + d = 0 and point A (-3, 0, -1) is lying between the planes P_1 and P_2 then the value of (b + c + d), is equal to
- 27. If $x\vec{i} + \vec{j} + \vec{k}$, $\vec{i} + y\vec{j} + \vec{k}$ and $\vec{i} + \vec{j} + z\vec{k}$ are coplanar where $x \neq 1$, $y \neq 1$, $z \neq 1$ then value of $\frac{1}{1-x} + \frac{1}{1-y} + \frac{1}{1-z}$ is -
- 28. If $(2\hat{i} + P\hat{j} + 2\hat{k})$ is perpendicular to $(4\hat{i}-2\hat{j}-\hat{k})$ then value of P is

- **29.** If the line 2x + y = 0 = x y + z is parallel to the plane kx + y + z + 2 = 0 then the value of k is equal to
- **30.** If O (origin) is a point inside the triangle PQR such that $\overrightarrow{OP} + k_1 \overrightarrow{OQ} + k_2 \overrightarrow{OR} = 0$ s, where k_1 , k_2 are constants such that $\frac{\text{Area}(\Delta PQR)}{\text{Area}(\Delta OQR)} = 4$, then the value of k_1 + k_2 is

