

8. (D) **Sol.** In the arrangement shown, the unpolarised light is incident at polarising angle of $90^\circ - 33^\circ = 57^\circ$. The reflected light is thus plane polarised light. When plane polarised light is passed through a Polaroid (a polariser or analyser), the intensity gradually reduces to zero and finally increases. **9.** (B) **Sol.** Since the incident light is unpolarized, the intensity of transmitted light at an angle θ with respect to the polarizing axis is: $I=I₀$ $\cos^2\theta$ Integrating over all angles between 0 $^{\rm 0}$ and 360 $^{\rm 0}$ is I $_{\rm 0}$ (cos $^{\rm 2}$ θ) $_{\rm avg}$ = I_0 2 Hence, the intensity of light not transmitted is I₀− $\frac{I_0}{2} = \frac{I_0}{2}$ 2 2 $=\frac{1}{10}$ **10.** (D) **Sol.** Here, $v = 1.2 \times 10^6$ m/s As $v = \frac{\Delta \lambda}{\lambda} \times c$ $\therefore \frac{\Delta\lambda}{\lambda} = \frac{0}{c} = \frac{1.2 \times 10^6}{3 \times 10^8} = 0.4 \times 10^{-7}$ $6 - 0.4 \times 10^{-2}$ $\frac{0}{\text{c}} = \frac{1.2 \times 10^6}{3 \times 10^8} = 0.4 \times 10^8$ $= 0.4 \times 10^{-2} \times 100$ $= 0.4 \%$ **11.** (C) **12.** (D) **Sol.** In such case we can find the resultant intensity by $\vec{l} = \vec{l}_1 + \vec{l}_2$ \vec{z} \vec{z} \vec{z} where $\left| \vec{I}_1 \right|{=} \left| \vec{I}_2 \right|$ For first $\frac{1}{3}$ $\frac{\lambda}{\lambda}$ corresponds to phase difference of $\frac{2}{3}$ 3 $\frac{\pi}{2}$.Thus resultant intensity will be equal to intensity of Interfering wave. For second $\frac{1}{6}$ $\frac{\lambda}{\lambda}$ corresponds to phase difference of $\frac{\pi}{3}$ $\frac{\pi}{2}$.Thus resultant intensity will be 3 to intensity of Interfering wave. For third $\frac{1}{4}$ λ corresponds to phase difference of 2 $\frac{\pi}{2}$.Thus resultant intensity **13.** (B) **Sol.** Since the value of 'μ' is maximum on the axis of the beam. Hence the speed of light in the medium is minimum on the axis of the beam. **14.** (C) **Sol.** The correct option is A 2:1 Given, path difference at point P, $\Delta x_1 = 0$ $\Rightarrow \Delta \phi_1$ = 0° $\therefore I_1$ = I₀ +I₀+2I₀cos0∘ = 4I₀ Similarly, path difference at point Q, $\Delta x_2 =$ 4 λ $\Rightarrow \Delta \phi_2$ = $\frac{2\pi}{\cdot}$. 4 (2 $\frac{2\pi}{\lambda} \cdot \frac{\lambda}{4} = \left(\frac{\pi}{2}\right)$ $|I_2= I_0+ I_0+ 2I_0$ cos 2 (π) $\left(\frac{\overline{1}}{2}\right)$ = 2I₀ $\therefore \frac{1}{2} = \frac{1}{2}$ 2 \sim \sim \sim \sim \sim I_1 4I₀ 2 I_2 2 I_0 1 $=\frac{-10}{1}$ **15.** (A) **Sol.** Since $D_m=(\mu-1)A$ & on increasing the wavelength, μ decreases Hence D_m decreases. Therefore correct answer is (B) **16.** (C) **Sol.** The correct option is A 0.853 Given, Path difference, $\Delta x=$ $\frac{\lambda}{2}$ Phase differences, $\Delta \phi =$ $\frac{\pi}{\Delta x} = \frac{2\pi}{\Delta x} \times \frac{\lambda}{\Delta x} = \frac{\pi}{\Delta x}$ λ λ $\frac{2\pi}{1} \Delta x = \frac{2}{1}$ 8 4 Relation of intensity with phase difference is $I=I_0\cos^2\left(\frac{\Delta\phi}{2}\right)$ Here I_0 is intensity of central bright fringe On substitution, \Rightarrow (π) $\left| \frac{1}{4} \right|_{\cos^2} (\pi)$ $=$ cos² $\left(\frac{4}{2}\right)$ $=$ cos² $\left(\frac{\pi}{8}\right)$ o $\left|\frac{1}{-1}\right| = \cos^2\left|\frac{1}{2}\right| = \cos$ $\frac{1}{2}$ 2 8 \Rightarrow $\frac{1}{1}$ $\frac{1}{I_0}$ =0.853

will be 2 to intensity of Interfering wave.

o

8

17. (D) **Sol.** The intensity of light at maxima is : $I_{\text{max}} = (I_1 + I_2)^2$ $I_{\text{max}} = (I_0 + I_0)^2$ \Rightarrow I_{max}=4I_o

- **18.** (A)
- **19.** (C)

Sol. $10 \beta_1 = 10 \times \frac{\lambda}{\mu}$ D μ λ in liquid $\beta_2 = \frac{\pi}{d}$ λ D $6\beta_2 = 10\beta_1$ d $\frac{6\lambda D}{d} = \frac{10\lambda I}{ud}$ $10\lambda D$ μ λ $\mu = \frac{10}{6} = 1.67$

- **20.** (D)
- Coherent sources produce light of same frequency and of constant phase difference.
- **21.** $k = 3$
- **Sol.** $W \propto I$

I $\frac{1}{1}$ $=$

4 1

$$
\frac{I_{\max}}{I_{\min}} = \frac{\left(\sqrt{\frac{I_1}{I_2}} + 1\right)^2}{\left(\sqrt{\frac{I_1}{I_2}} - 1\right)^2}
$$

$$
\frac{I_{\max}}{I_{\min}} = \left(\frac{3}{1}\right)^2
$$

$$
\frac{I_{\max}}{I_{\min}} = \frac{9}{1}
$$

- **22.** 198
- **Sol.** For obtaining secondary minima at a point, path difference should be integral multiple of wavelength

 \therefore dsin θ =n λ

$$
\therefore \sin\theta = \frac{n\lambda}{d}
$$

For n to be maximum, $sin\theta=1$

$$
\therefore \qquad n = \frac{d}{\lambda} = \frac{6 \times 10^{-5}}{6 \times 10^{-7}} \qquad \qquad = 100
$$

Total number of minima on one side =99 \therefore Total number of minima =198.

23. 30
\n**Sol.** Diameter d=2r=2×0.25=0.5cm,
\nThe wavelength of light
\nis λ =500nm=5×10⁻⁷m.
\nWe have the formula
$$
sinθ = \frac{1.22λ}{d}
$$

\nor
\n $sinθ = \frac{1.22×5×10^{-7}}{0.5×10^{-2}} = 1.22×10^{-4}$
\nAlso D=25cm
\nLet x be the minimum separation between
\ntwo objects that the human
\neye can resolve.
\nThus $sinθ = \frac{x}{D}$
\nor
\nx=Dsinθ = .25×1.22×10⁻⁴=30×10⁻⁶=30μm
\n24. 17
\n**Sol.** Speed of observer V= $\frac{C}{2}$
\nwhere speed of Microwave is C
\nOriginal frequency of source is given as
\nf₀=10GHz/
\nUsing relativistic Doppler effect in case
\nobserver moves towards the stationary
\nsoparent frequency measured by
\n25. appearth frequency measured by
\n26.10.10.200
\n $f=10\sqrt{\frac{C+(C/2)}{C-(C/2)}}$
\n $f=10\sqrt{\frac{(3/2)C}{(1/2)C}}$
\n $F'=10×1.73GH_z$
\n $F'=17.3GH_z$
\n25. 5
\n**Sol.** Limit of resolution of eye = θ = $\frac{1.22λ}{D}$

$$
= \frac{1.22 \times 5 \times 10^{-7}}{3 \times 10^{-3}} = 2.03 \times 10^{-4} \text{ rad}
$$

$$
\theta = \frac{1 \text{ mm}}{\text{x}} = \frac{10^{-3}}{\text{x}} = 2.03 \times 10^{-4} \text{ rad}
$$

$$
\times = \frac{10^{-3}}{2.03 \times 10^{-4}} = 5 \text{ m}
$$

26. 2 **Sol.** Angular fringe width $\theta_{\beta} = \frac{p}{D}$ $\frac{\beta}{D} = \frac{\lambda}{d}$ λ According to the given condition d $\frac{\lambda}{d} \ge \frac{\pi}{180 \times 60}$ π $d < \frac{0 \times 10^{-10}}{\pi}$ $6 \times 10^{-7} \times 180 \times 60$ d_{max} = 2.06 × 10⁻³ m d_{max} = 2.06 mm **27.** 3 **Sol.** $\theta = 0.01$ radian $n = 10$ $\lambda = 6000 \times 10^{-8}$ cm $\Delta x = 2t = n\lambda$ Air 0.01 radian t θ $\overline{\mathbf{x}}$ $\theta =$ x t $t = \theta x$ $2\theta x = n\lambda$ $x = \frac{12}{2\theta}$ λ 2 n $= 3 \times 10^{-1}$ cm

28. 2
\n**Sol.** When coherent then ∆x at centre = 0
\n∴ I_{net} = 4I
\nwhen Incoherent
\n
$$
\frac{\Gamma_{net}}{\Gamma_{net}} = 1 + 1 = 2I
$$
\nRatio = $\frac{I_{net}}{I_{net}} = \frac{2}{1} = 2$
\n**29.** 3

 Say 'n' fringes are present in the region shown by 'y'

$$
\Rightarrow y = n\beta = \frac{n\lambda D}{d}
$$

$$
\Rightarrow \frac{y}{D} \approx \tan(0.06^\circ) \approx \frac{0.06 \times \pi}{180} = \frac{n\lambda}{d}
$$

$$
\Rightarrow n = \frac{10^3 \times \pi}{180} \times 0.06 = \frac{\pi}{3} > 1.
$$

 Hence; only one maxima above and below point O. So total 3 bright spots will be present (including point 'O' i.e. the central maxima).

30. 3

Sol. At B; $\Delta P = 4\lambda$ (maxima)

At $x = \infty$; $\Delta P = 0$ (maxima)

 Hence in between; the point at which path difference is either λ , or 2λ or $3\lambda \rightarrow$ they will be maximas. Hence 3 maximas.