JEE MAIN ANSWER KEY &	SOLUTIONS

CLASS :- 12 th								PAPER CODE :- CWT-8							
1. 8. 15. 22.	(B) (D) (A) 198	2. 9. 16. 23.	(C) (B) (C) 30	3. 10. 17. 24.	(D) (D) (D) 17	4. 11. 18. 25.	(C) (C) (A) 5	5. 12. 19. 26.	(A) (D) (C) 2	6. 13. 20. 27.	(D) (B) (D) 3	7. 14. 21. 28.	(B) (C) 3 2		
29.	SOLUTIONS														
1. Sol.	(B) I ∞A²			(``		5. Sol.	(A)		7	٩				
2. Sol.	$\frac{I_{max}}{I_{min}} = 16, \frac{A_{max}}{A_{min}} = 4, \Rightarrow \left(\frac{A_1 + A_2}{A_1 - A_2}\right) = \frac{4}{1}$ Using component & divined. $\frac{A_1}{A_2} = \frac{5}{3} \Rightarrow \frac{I_1}{I_3} = \left(\frac{5}{3}\right)^2 = \frac{25}{9}$ (C) If a thin film of mica is placed in front of slit							Displacement is due to extra path different $\frac{y(2d)}{D} = (\mu - 1)t, y = \frac{2tD}{3(2d)} = \frac{tD}{3d}$ $y = \frac{tD}{2d}$							
	S_1 then the pattern is shifted upwards and if the thin mica sheet is place in front of S_2 then the pattern will shit downwards. There will be no change in the fringe-width as there is no change in the distance D between the slits and the screen; no change in the distance d between the slits and the wavelength λ .							(D) Yo bey wa slit Lig to a As	 (D) Young's double slit experiment proved beyond a shadow of a doubt that light is a wave. The superposition of light from two slits produces an interference pattern. Step 1 : Explanation Light with a single wavelength is referred to as monochromatic. As a result, the interference fringes created on the screen have a straight line shape. 						
3. Sol.	(D) We have I ₁ and I ₂ as 16 and 9. $\frac{I_{max}}{I_{min}} = \frac{(\sqrt{I_1} + \sqrt{I_2})}{(\sqrt{I_2} - \sqrt{I_2})^2} = \frac{(4+3)^2}{(4-3)^2} = \frac{49}{1}$							(B) Giv Th rec sin	(B) Given - λr =6600Ao The angular position of first minimum for red light of wavelength λr , is given by $\sin\theta_1 = \frac{\lambda_r}{2}$ eq1						
4. Sol.	(C) $w = \frac{2\lambda D}{a}, w_{1} = \frac{2\lambda D}{a}, w_{2} = \frac{\lambda D}{6.1 \times a}$ Then, $n = \frac{W_{1}}{W_{2}}, \Rightarrow n = \frac{\frac{2\lambda D}{a}}{\frac{\lambda D}{6.1 \times a}}$ $\Rightarrow n = 12.2$ Since n must be a whole number, Therefore, $n = 12$. Thus, the number of maxima of double-slit interference that will be observed within the width of central maxima of single-slit diffraction is $n = 12$.							Th oth sin As coi ligh sin or or or	The angular position of first maximum for other light of wavelength λ is given by $\sin\theta_1' = \frac{3\lambda}{2a}$ eq2 As given, the first minimum for red light coincides with the first maximum for other light, hence $\sin\theta_1 = \sin\theta_1$ or $\frac{\lambda_r}{a} = \frac{3\lambda}{2a}$ or $\lambda = \frac{2\lambda_r}{3}$ or $\lambda = \frac{2\times 6600}{3} = 4400$ Å						

8. (D) 13. (B) Sol. In the arrangement shown, Sol. Since the value of 'µ' is maximum on the the unpolarised light is incident at polarising axis of the beam. Hence the speed of light angle of $90^{\circ} - 33^{\circ} = 57^{\circ}$. The reflected in the medium is minimum on the axis of light is thus plane polarised light. When the beam. plane polarised light is passed through a (C) Polaroid (a polariser or analyser), the 14. The intensity gradually reduces to zero and Sol. correct option is A 2:1 finally increases. Given, path difference at point P, $\Delta x_1 = 0$ $\Rightarrow \Delta \phi_1$ $\therefore I_1 = I_0 + I_0 + 2I_0 \cos 0 \circ = 4I_0$ Similarly, path difference at point Q, 9. (B) Sol. Since the incident light is unpolarized, the intensity of transmitted light at an $\Delta x_2 = \frac{\lambda}{4}$ angle θ with respect to the polarizing axis is: $I=I_0$ $\cos^2\theta$ angles Integrating over all $\Rightarrow \Delta \phi_2 = \frac{2\pi}{\lambda} \cdot \frac{\lambda}{A} = \left(\frac{\pi}{2}\right)$ between 0° and 360° is $I_0(\cos^2\theta)_{avg} = \frac{I_0}{2}$ Hence, the intensity of light not transmitted $\therefore I_2 = I_0 + I_0 + 2I_0 \cos\left(\frac{\pi}{2}\right) =$ is $I_0 - \frac{I_0}{2} = \frac{I_0}{2}$ $\therefore \frac{I_1}{I_2} = \frac{4I_0}{2I_0} = \frac{2}{1}$ 10. (D) Here, $v = 1.2 \times 10^{6}$ m/s Sol. As $\upsilon = \frac{\Delta \lambda}{2} \times c$ 15. (A) $\therefore \frac{\Delta \lambda}{\lambda} = \frac{\upsilon}{c} = \frac{1.2 \times 10^6}{3 \times 10^8} = 0.4 \times 10^{-2}$ = 0.4 × 10⁻² × 100 Sol. Since $D_m = (\mu - 1)A$ & on increasing the wavelength, µ decreases = 0.4 %Hence D_m decreases. Therefore correct 11. (C) answer is (B) 12. (D) 16. (C) Sol. In such case we can find the resultant The Sol. correct option is A 0.853 intensity by $\vec{I} = \vec{I}_1 + \vec{I}_2$ where $\left| \vec{I}_1 \right| = \left| \vec{I}_2 \right|$ $\Delta x = \frac{\lambda}{8}$ difference, Given. Path For first $\frac{\lambda}{3}$ corresponds to phase Phase differences, $\Delta \phi =$ $\frac{2\pi}{\lambda}\Delta x = \frac{2\pi}{\lambda} \times \frac{\lambda}{8} = \frac{\pi}{4}$ difference of $\frac{2\pi}{3}$. Thus resultant intensity Relation of intensity with phase difference is will be equal to intensity of Interfering $I=I_0\cos^2\left(\frac{\Delta\phi}{2}\right)$ wave. For second $\frac{\lambda}{\epsilon}$ corresponds to phase Here I₀ is intensity of central bright fringe difference of $\frac{\pi}{2}$.Thus resultant intensity On substitution, will be 3 to intensity of Interfering wave. $\Rightarrow \frac{I}{I_o} = \cos^2\left(\frac{\frac{\pi}{4}}{2}\right) = \cos^2\left(\frac{\pi}{8}\right)$ For third $\frac{\lambda}{4}$ corresponds to phase difference of $\frac{\pi}{2}$. Thus resultant intensity $\Rightarrow \frac{1}{1} = 0.853$

will be 2 to intensity of Interfering wave.

0°

2I₀

17. (D) The intensity of light at maxima is : Sol. $I_{max} = (I_1 + I_2)^2$ $I_{max} = (I_o + I_o)^2$ \Rightarrow I_{max}=4I_o 18. (A) 19. (C)

10 $\beta_1 = 10 \times \frac{\lambda D}{\mu d}$ Sol. in liquid $\beta_2 = \frac{\lambda D}{d}$ $6\beta_2 = 10\beta_1$ $\frac{6\lambda D}{d} = \frac{10\lambda D}{\mu d}$ $\mu = \frac{10}{6} = 1.67$

20. (D)

Sol. Coherent sources produce light of same frequency and of constant phase difference.

- 21. k = 3 $M \propto I$
- Sol.

 $\frac{I_{1}}{I_{2}} = \frac{4}{1}$

$$\frac{I_{max}}{I_{min}} = \frac{\left(\sqrt{\frac{I_1}{I_2}} + 1\right)^2}{\left(\sqrt{\frac{I_1}{I_2}} - 1\right)^2}$$
$$\frac{I_{max}}{I_{min}} = \left(\frac{3}{1}\right)^2$$
$$\frac{I_{max}}{I_{min}} = \frac{9}{1}$$

22. 198

Sol. For obtaining secondary minima at a point, path difference should be integral multiple of wavelength

 \therefore dsin θ =n λ

 $\therefore \sin\theta = \frac{n\lambda}{n}$ d

For n to be maximum, $\sin\theta = 1$

:.
$$n = \frac{d}{\lambda} = \frac{6 \times 10^{-5}}{6 \times 10^{-7}} = 100$$

Total number of minima on one side =99 ... Total number of minima =198.

23. 30
Sol. Diameter d=2r=2×0.25=0.5cm,
The wavelength of light
is
$$\lambda$$
 =500nm=5×10⁻⁷m.
We have the formula sin $\theta = \frac{1.22\lambda}{d}$
or
sin $\theta = \frac{1.22 \times 5 \times 10^{-7}}{0.5 \times 10^{-2}} = 1.22 \times 10^{-4}$
Also D=25cm
Let x be the minimum separation between
two objects that the human
eye can resolve.
Thus sin $\theta = \frac{x}{D}$
or
x=Dsin $\theta = .25 \times 1.22 \times 10^{-4} = 30 \times 10^{-6} = 30 \mu m$
24. 17
Sol. Speed of observer V= $\frac{C}{2}$
where speed of Microwave is C
Original frequency of source is given as
f₀=10GH₂
Using relativistic Doppler effect in case
observer moves towards the stationary
source.
Apparent frequency measured by
observer f'=f₀ $\sqrt{\frac{C+v'}{C-v'}}$
f'= 10 $\sqrt{\frac{(3/2)C}{C-(C/2)}}$
f'=10 $\sqrt{\frac{(3/2)C}{(1/2)C}}$
F'=10×1.73GH₂
25. 5
Sol. Limit of resolution of eye = $\theta = \frac{1.22\lambda}{D}$

30

$$= \frac{1.22 \times 5 \times 10^{-7}}{3 \times 10^{-3}} = 2.03 \times 10^{-4} \text{ rad}$$

$$\theta = \frac{1\text{mm}}{\text{x}} = \frac{10^{-3}}{\text{x}} = 2.03 \times 10^{-4} \text{ rad}$$

$$x = \frac{10^{-3}}{2.03 \times 10^{-4}} = 5\text{m}$$

26. 2 Angular fringe width $\theta_{\beta} = \frac{\beta}{D} = \frac{\lambda}{d}$ Sol. According to the given condition $\frac{\lambda}{d} \geq \frac{\pi}{180 \times 60}$ $d < \frac{6 \times 10^{-7} \times 180 \times 60}{\pi}$ $d_{max} = 2.06 \times 10^{-3} \text{ m}$ d_{max} = 2.06 mm 27. 3 Sol. θ = 0.01 radian n = 10 $\lambda = 6000 \times 10^{-8} \text{ cm}$ $\Delta x = 2t = n\lambda$ Air 0.01 radian θ= $t = \theta x$ $2\theta x = n\lambda$ $\mathbf{x} = \frac{\mathbf{n}\lambda}{2\theta}$ $= 3 \times 10^{-1} \text{ cm}$

28. 2
Sol. When coherent then
$$\Delta x$$
 at centre = 0
 \therefore I_{net} = 4I
when Incoherent
 $\underline{I'_{net}} = I + I = 2I$
Ratio = $\frac{I_{net}}{I'_{net}} = \frac{2}{1} = 2$
29. 3

Say 'n' fringes are present in the region shown by 'y'

$$\Rightarrow \qquad y = n\beta = \frac{n\lambda D}{d}$$

$$\Rightarrow \qquad \frac{y}{D} \approx \tan(0.06^{\circ}) \approx \frac{0.06 \times \pi}{180} = \frac{n\lambda}{d}$$

$$\Rightarrow \qquad n = \frac{10^3 \times \pi}{180} \times 0.06 = \frac{\pi}{3} > 1.$$

Hence; only one maxima above and below point O. So total 3 bright spots will be present (including point 'O' i.e. the central maxima).

30.

3

Sol. At B; $\Delta P = 4\lambda$

(maxima)

At $x = \infty$; $\Delta P = 0$ (maxima) Hence in between; the point at which path difference is either λ , or 2λ or $3\lambda \rightarrow$ they will be maximas. Hence 3 maximas.