JEE MAIN ANSWER KEY & SOLUTIONS

$$
\therefore \frac{3}{e^2} = \frac{1}{e^2} + \frac{c_1}{e^2} \Rightarrow c_1 = 2
$$

\n
$$
\therefore y(x) = \begin{cases} \frac{x+1}{e^x} , & 0 \le x \le 2\\ \frac{1}{e^2} + \frac{2}{e^x} , & x > 2 \end{cases}
$$

\n
$$
\therefore y(3) = \frac{1}{e^2} + \frac{2}{e^3} = \left(\frac{e+2}{e^3}\right)
$$

7. (C) **Sol.** $y = u^m$

 $dy/dx = mu^{m-1} \frac{du}{dt}$ dx The given differential equation becomes

$$
2x^{4} \cdot u^{m} \cdot mu^{m-1} \frac{du}{dx} + u^{4m} = 4x^{6}
$$

$$
\Rightarrow \frac{du}{dx} = \frac{4x^{6} - u^{4m}}{2mx^{4}x^{2m-1}}
$$

 For homogeneous equation degree should be same in numerator & denominator so, $6 = 4m = 4 + 2m - 1 \Rightarrow m = 3/2$

8. (A)

Sol. We have 2 3 y $\frac{y_3}{2}$ = 8 \Rightarrow ln y₂ = 8x + C₁ Putting $x = 0$, we have $C_1 = \log y_2(0) = \log$ $1 = 0$.. log $y_2 = 8x$ or $y_2 = e^{8x}$ i.e. $y_1 = \frac{8}{8}$ e^{8x} $+ C₂$

Again, putting $x = 0$, we ha<mark>ve C₂ = $-\frac{1}{8}$ </mark> 1 So, $y_1 = \frac{1}{8}$ $\frac{1}{6}$ (e^{8x} – 1) \Rightarrow y = 8 1 I J Ι I l $\left(\frac{e^{8x}}{8}-x\right)$ $\frac{e^{8x}}{2} - x + C_3$ Putting $x = 0$, we have $C_3 = \frac{1}{8}$ $\frac{1}{8} - \frac{1}{64}$ $\frac{1}{64} = \frac{7}{64}$ 7 Thus $y = \frac{1}{8}$ 1 $\overline{}$ Ι $\overline{}$ $\frac{e^{8x}}{8} - x + \frac{7}{8}$ $\frac{8}{8}$ – x + $\frac{7}{8}$ e^{8x}

J

∖

9. (D)

Sol. $y = e^{4x} + 2e^{-x}$

$$
\frac{dy}{dx} = 4e^{4x} - 2e^{-x} \implies \frac{d^2y}{dx^2} = 16e^{4x} + 2e^{-x}
$$

$$
\frac{d^3y}{dx^3} = 64e^{4x} - 2e^{-x}
$$

$$
\therefore \frac{\frac{d^3y}{dx^3} - 13\frac{dy}{dx}}{y}
$$

$$
= \frac{(64e^{4x} - 2e^{-x}) - 13(4e^{4x} - 2e^{-x})}{e^{4x} + 2e^{-x}}
$$

$$
= \frac{12e^{4x} + 24e^{-x}}{e^{4x} + 2e^{-x}} = 12
$$

$$
\therefore \frac{k}{3} = 4.
$$

10. (B)

Sol. Solving the equations of the asymptotes the centre is $x = 1$ and $y = 0$, since $e = \sqrt{2}$ the equation of the family of the hyperbola is

$$
\frac{(x-1)^2}{a^2} - \frac{(y)^2}{a^2} = 1
$$

\n
$$
\Rightarrow 2(x-1) - 2y \frac{dy}{dx} = 0
$$

\n
$$
\Rightarrow (x-1) = yy' \text{ is differential equation.}
$$

11. (B)

Let the curve be $y = f(x)$. The equation of tangent at any point (x, y) is given by $Y - y = f'(x)$ $(X - x)$. So the portion of the axis of x which is cut off between the origin and the tangent at any point is obtained by putting $Y = 0$. Therefore,

$$
x - \frac{y}{f'(x)} = Ky \Rightarrow x - y \frac{dx}{dy} = Ky \Rightarrow \frac{dx}{dy} - \frac{x}{y} = -K
$$

which is a linear equation in x, so its
integrating factor is $e^{-\int (1/y)dy} = y^{-1}$.
Therefore, multiplying by y^{-1} , we have

$$
\frac{d}{dy} (xy^{-1}) = - Ky^{-1} \Rightarrow xy^{-1} = -K \log y + C
$$

 \Rightarrow x = y (C –K log y) where C is arbitrary constant.

$$
|2. \qquad (A)
$$

Sol.
$$
\left(\frac{dx}{x} - \frac{dy}{y}\right) + \left(\frac{x^2dy - y^2dx}{(x - y)^2}\right) = 0
$$

$$
\left(\frac{dx}{x} - \frac{dy}{y}\right) + \frac{\left(\frac{dy}{y^2} - \frac{dx}{x^2}\right)}{\left(\frac{1}{y} - \frac{1}{x}\right)^2} = 0
$$

$$
\left(\frac{dx}{x} - \frac{dy}{y}\right) + \left[\frac{\frac{dy}{y^2} - \frac{dx}{x^2}}{\left(\frac{1}{x} - \frac{1}{y}\right)^2}\right] = 0
$$

In $|x| - \ln |y| - \frac{1}{\left(\frac{1}{x} - \frac{1}{y}\right)}$
In $\left|\frac{x}{y}\right| + \frac{xy}{x - y} = c$

13. (C)
\n**Sol.** We can write
$$
y = A \cos(x + B) - Ce^{x}
$$

\nwhere $A = c_1 + c_2$, $B = c_3$ and $C = c_4 e^{c_5}$
\n
$$
\frac{dy}{dx} = -A \sin(x + B) - Ce^{x}
$$
\n
$$
\Rightarrow \frac{d^2y}{dx^2} = -A \cos(x + B) - Ce^{x}
$$

2

$$
\frac{d^2y}{dx^2} + y = -2Ce^x
$$
\n
$$
\frac{d^3y}{dx^3} + \frac{dy}{dx} = -2 Ce^x = \frac{d^2y}{dx^2} + y
$$
\n
$$
\frac{d^3y}{dx^3} - \frac{d^2y}{dx^2} + \frac{dy}{dx} - y = 0
$$
\nWhich is a differential equation of degree 1.
\nHence (C) is the correct answer.
\n14. (C)
\n**Sol.** We have, $y - x \frac{dy}{dx} = a(y^2 + \frac{dy}{dx})$
\n $\Rightarrow y dx - x dy = ay^2 dx + a dy$
\n $\Rightarrow y dx - x dy = ay^2 dx + a dy$
\n $\Rightarrow \frac{dx}{x + a} - \frac{dy}{y(1 - ay)} = 0$
\nIntegrating, we get
\n
$$
\log (x + a) - \log y + \log (1 - ay) = \log c
$$
\n $\Rightarrow \log \frac{(a + x)(1 - ay)}{y} = \log c \Rightarrow (x + a)$
\n $(1 - ay) = cy$.
\nSince the curve passes through $\left(a, -\frac{1}{a}\right)$,
\n $\therefore 2a \times (1 + 1) = -\frac{c}{a} \Rightarrow c = -4a^2$.
\nSo, the equation of curve is
\n $(x + a)(1 - ay) = -4a^2y$.
\nHence (C) is the correct answer
\n15. (B)
\n**Sol.** We have, $x dy = \left(y + \frac{x f(y/x)}{f'(y/x)} \right) dx$
\n $\Rightarrow \frac{dy}{dx} = \frac{y}{x} + \frac{f(y/x)}{f'(y/x)}$ which is
\nhomogeneous.
\nPut $y = Vx \Rightarrow \frac{dy}{dx} = V + x \frac{dV}{dx}$,
\nWe obtain
\n $V + x \frac{dV}{dx} = V + \frac{f(V)}{f'(V)} dV$
\n $\Rightarrow \frac{f'(V)}{f(V)} dV = \frac{dx}{x}$
\nIntegrating, we get
\n $\Rightarrow \log f(V) = \log cx \Rightarrow f\left(\frac{y}{x}\right) = cx$.
\nHence (B) is the correct answer.
\n16. (C)
\n**Sol.** We have

Put y = Vx so that
$$
\frac{dy}{dx} = x \frac{dV}{dx} + V
$$

\n
$$
\Rightarrow x \frac{dV}{dx} = \frac{V}{1 - 2\sqrt{V}} - V = \frac{2V^{3/2}}{1 - 2\sqrt{V}}
$$
\n
$$
\Rightarrow \frac{dx}{x} = \frac{1 - 2\sqrt{V}}{2V^{3/2}} dV = \left(\frac{1}{2V^{3/2}} - \frac{1}{V}\right) dV
$$

Integrating, we get

$$
-c + \log x = -\sqrt{-1/2} - \log \sqrt{1/2}
$$

$$
= -\sqrt{\frac{x}{y}} - \log y + \log x
$$

$$
\Rightarrow \log y + \sqrt{\frac{x}{y}} = c.
$$

Hence (C) is the correct answer.

17. (C)

Sol. The given equation is
\n
$$
\frac{dy}{dx} = \frac{y f'(x) - y^2}{f(x)}
$$
\n
$$
\Rightarrow y f'(x) dx - f(x) dy = y^2 dx
$$
\n
$$
\Rightarrow \frac{y f'(x) dx - f(x) dy}{y^2} = dx \Rightarrow d \left[\frac{f(x)}{y} \right] = dx
$$
\nOn integration, we get
\n
$$
\frac{f(x)}{y} = x + c \Rightarrow f(x) = y(x + c).
$$

$$
18. \qquad \text{(B)}
$$

Sol. Given that,
$$
\frac{dy}{dx} = \frac{2x - y}{x + 2y}
$$
 ... (i)
\nLet $y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$
\n $\therefore v + x \frac{dv}{dx} = \frac{2 - v}{1 + 2v}$
\n $\Rightarrow x \frac{dv}{dx} = \frac{2 - v - v(1 + 2v)}{1 + 2v}$
\n $\Rightarrow \int \frac{1 + 2v}{2(1 - v - v^2)} dv = \int \frac{1}{x} dx$
\n $\Rightarrow \log c - \frac{1}{2} \log (1 - v - v^2) = \log x$
\n $\Rightarrow 2 \log c - \log (1 - v - v^2) = 2 \log x$
\n $\Rightarrow \log c^2 = \log [x^2 (1 - v - v^2)]$ where $c^2 = C$
\n $\Rightarrow C = x^2 \left(1 - \frac{y}{x} - \frac{y^2}{x^2}\right)$
\n $\Rightarrow x^2 - xy - y^2 = C$

19. (A)

Sol. Given, $x + y$ $x - y$ dx dy $^{+}$ $=\frac{X-}{X}$ This is a homogeneous equation Put $y = v \times \Rightarrow$ dx $\frac{dy}{dx}$ = v + x dx dv Given equation becomes $V + X$ dx $\frac{dv}{dx} = \frac{1-v}{1+v}$ $1 - v$ $^{+}$ \overline{a} \Rightarrow x dx $\frac{dv}{dt}$ = $1 + v$ $1 - v$ $^{+}$ $\frac{-v}{-v}$ – v $\Rightarrow \frac{1}{2-(1+v)^2}$ $1 + v$ $\frac{+v}{2}$ dv = dx

On integrating both sides

 $-(1 +$

$$
\int \frac{1+v}{2-(1+v)^2} dv = \int \frac{dx}{x}
$$

Put $(1+v)^2 = t \Rightarrow 2(1+v) dv = dt$
 $\Rightarrow \frac{1}{2} \int \frac{dt}{2-t} = \int \frac{dx}{x}$
 $\Rightarrow -\frac{1}{2} \log (2-t) = \log x + \log c$
 $\Rightarrow -\frac{1}{2} \log [2-(1+v)^2] = \log x c$
 $\Rightarrow -\frac{1}{2} \log [-v^2 - 2v + 1] = \log x c$
 $\Rightarrow \log \frac{1}{\sqrt{1-2v-v^2}} = \log x c$
 $\Rightarrow x^2 c^2 (1-2v-v^2) = 1$
 $\Rightarrow x^2 c^2 \left(1-\frac{2y}{x}-\frac{y^2}{x^2}\right) = 1 \left[\because v = \frac{y}{x}\right]$
 $\Rightarrow \frac{x^2 c^2 (x^2 - 2yx - y^2)}{x^2} = 1$
 $\Rightarrow y^2 + 2xy - x^2 = c$

x

20. (D)

Sol. Given that,
$$
x dy - y dx = \sqrt{x^2 + y^2} dx
$$

\n $\Rightarrow \qquad x dy = (\sqrt{x^2 + y^2} + y) dx$

$$
\Rightarrow \qquad \frac{dy}{dx} = \frac{\sqrt{x^2 + y^2} + y}{x}
$$

 Now, put y = vx and dx $\frac{dy}{dx}$ = v + x dx dv \therefore v + x $\frac{dv}{dt} = \frac{\sqrt{x^2 + v^2x^2 + vx}}{2}$

$$
v + x =
$$

\n
$$
\Rightarrow x \frac{dv}{dx} = \sqrt{1 + v^2} + v - v = \sqrt{1 + v^2}
$$

\nOn integrating both sides
\n
$$
\int \frac{dv}{\sqrt{1 + v^2}} = \int \frac{dx}{x}
$$

⇒ log (v +
$$
\sqrt{1 + v^2}
$$
) = log x + log c
\n⇒ y + $\sqrt{x^2 + y^2}$ = cx²
\n21. 2
\nSol. We have, $\frac{dy}{dx} = \frac{ax + 3}{2y + f}$
\n⇒ (ax + 3) dx = (2y + f) dy
\nOn integrating, we obtain
\n $a \frac{x^2}{2} + 3x = y^2 + fy + c$
\n⇒ $-\frac{a}{2}x^2 + y^2 - 3x + fy + c = 0$
\nThis will represent a circle, if
\n $-\frac{a}{2} = 1$ [∴ Coeff. of x² = Coeff. of y²]
\nand $\frac{9}{4} + f^2 - c > 0$ [Using g² + f² - c > 0]
\n⇒ a = -2 and 9 + 4f² - 4c > 0
\n22. 48
\nSol. Let Population = x, time = t (in years)
\nGiven $\frac{dx}{dt} \propto x \Rightarrow \frac{dx}{dt} = kx$
\nWhere k is a constant of proportionality
\nor $\frac{dx}{dx} = k dt$
\nIntegrating, we get
\n $hx = kt + h c$
\n⇒ $h(\frac{x}{c}) = kt \Rightarrow \frac{x}{c} = e^{kt}$
\nIf initially i.e., when time t = 0, x = x₀
\nthen x₀ = ce⁰ = c
\n∴ x = x₀e^{kt}
\nGiven x = 2x₀, t = 30
\nthen 2x₀ = x₀e⁻³⁰⁰
\n∴ n2 = 30 k (1)
\nTo find t, when it triples, x = 3x₀
\n∴ 3x₀ = x₀e^{kt} ⇒ 3 = e^{kt}
\n∴ n2 = 30 × (2)
\nDividing (2) by (1) then $\frac{t}{30} = \frac{ln3}{ln2}$
\nor t = 30 × $\frac{ln3}{ln2}$ = 30 × 1.5849 = 48 years.
\n23.

$$
\Rightarrow \frac{dT}{dt} = -k (T - 290)
$$

 Where k is constant of proportionality and negative sign denote rate of cooling.

dt

4

23.
Sol.

21. 2

Sol.

 $22.$

or
$$
\frac{dT}{(T-290)} = -k dt
$$

\nintegrating, we get
\n $\int \frac{dT}{(T-290)} = -k \int dt$
\n⇒ln (T-290) = -kt + ln c
\n⇒ $\left(\frac{T-290}{c}\right) = e^{-kt}$
\nor (T-290) = ce^{-kt}
\nIf initially i.e., when t = 0 & T = 370
\nThen (370 - 290) = ce
\n∴ c = 80
\n∴ T - 290 = 80e^{kt} (1)
\nand for t = 10, T = 330
\n∴ 330 - 290 = 80e^{-10k} ⇒ (40) = 80e^{-10k}
\n⇒ 2 = e^{10k}
\nln2 = 10 k (2)
\nTo find t, when T = 295
\nfrom (1), 295 - 290 = 80e^{-kt}
\n⇒ $\frac{5}{80} = e^{-kt}$ ⇒ln 16 = kt
\nor 4 ln 2 = kt (3)
\nDividing (3) by (2) then 4 = $\frac{t}{10}$

 \therefore t = 40 minutes.

24. 79

Sol. Let x denote the population at a time t in years.

> then dt $\frac{dx}{dx} \propto x \Rightarrow$ dt $\frac{dx}{dt}$ = kx

when k is a constant of proportionality.

Solving
$$
\frac{dx}{dt} = kx
$$
, we get
\n
$$
\int \frac{dx}{x} = \int k dt \Rightarrow \log x = kt + c
$$
\n
$$
\Rightarrow x = e^{kt + c}
$$
\n
$$
\Rightarrow x = x_0 e^{kt}
$$

Where x_0 is the population at time $t = 0$.

Since it doubles in 50 years, at $t = 50$, we must have $x = 2x_0$.

Hence
$$
2x_0 = x_0 e^{50 k} \Rightarrow 50 k = \log 2
$$

$$
\Rightarrow k = \frac{\log 2}{50} \text{ so that } x = x_0 e^{\frac{\log 2}{50}t}
$$

To find t, when it triples, $x = 3x_0$

$$
\Rightarrow 3x_0 = x_0 e^{\frac{\log 2}{50}t} \Rightarrow \log 3 = \frac{\log 2}{50} t
$$

$$
\Rightarrow t = \frac{50 \log 3}{\log 2} = 79 \text{ years.}
$$

Sol.
$$
\frac{dy}{dx} = y + 1
$$

variable sep.

$$
\int \frac{dy}{y+1} = \int dx \Rightarrow \log (y + 1) = x
$$

$$
\log 2 = c
$$

So log (y + 1) = x + log 2

$$
\Rightarrow y (\ln 2)
$$

 $+ c, y(0) = 1$

 log (y +1) = 2 log 2 = log 4 $y + 1 = 4$ \Rightarrow y = 3

26. 0005

25.

Sol. Let y(t) denote the number of people who know the rumour at time t. Maximum value of $y(t)$ is 5000, $y(0) = 100$ and $y(2) = 500$. Also

$$
\frac{dy}{dt} (xy (5000 - y) = \frac{dy}{dt} = ky(5000 - y)
$$

\nSeparating variables and integrating we get :
\n
$$
\int \frac{dy}{y(5000 - y)} = kt + c
$$

\n
$$
\Rightarrow \frac{1}{5000} log \frac{y}{5000 - y} = kt + c
$$

\n
$$
\Rightarrow \frac{y}{5000 - y} = Const. e^{5000kt} = ke^{5000kt}
$$

\n⇒y(1 + ke^{5000kt}) = 5000ke^{5000kt}; put y(0) =
\n100 ⇒ 100(1 + k) = 5000 k
\n⇒ k = 1/49. Using y(2) = 500
\n⇒ 500 (1 + ke^{10,000k}) = 5000ke^{10,000k}
\n⇒ 1 = 9 ke^{10,000k} ⇒ e^{10000k} = 49/9
\n⇒ k = $\frac{1}{10,000}$ log 49/9
\n∴ i⇒ y = $\frac{5000/49}{e^{-5000kt} + 1/49} = \frac{5000}{49e^{-5000kt} + 1}$
\nTo determine how long it will take for half the population to hear rumour,
\n2500 = $\frac{5000}{1.40e^{-5000kt}}$

$$
2500 = \frac{5000}{1 + 49e^{-5000kt}}
$$

\n
$$
\Rightarrow 1 + 49e^{-5000kt} = 2 \Rightarrow e^{-5000kt} = 1/49
$$

\n5000 kt = log 49 \Rightarrow t = log 49/5000 k

5

$$
\Rightarrow t = \frac{2 \log 49}{\log 49 - \log 9} = \frac{2}{1 - \frac{\log 9}{\log 49}} = \frac{2}{1 - \frac{129}{229}}
$$

= 4.58 days ≈ 5 days.
27. 7
Sol. y = Ax^m + Bx⁻ⁿ

$$
\Rightarrow \frac{dy}{dx} = Amx^{m-1} - nBx^{-n-1}
$$

$$
\Rightarrow \frac{d^2y}{dx^2} = Am (m - 1) x^{m-2} + n (n + 1) Bx^{-n-2}
$$

Putting these values in x² $\frac{d^2y}{dx^2}$ + 2x $\frac{dy}{dx}$ = 12y
We have = m (m + 1) Ax^m + n (n - 1) Bx⁻ⁿ
= 12 (Ax^m + Bx⁻ⁿ)

$$
\Rightarrow m (m + 1) = 12
$$
 or n (n - 1) = 12

$$
\Rightarrow m = 3, -4
$$
 or n = 4, -3

- **28.** 1
- **Sol.** The parametric form of the given equation is $x = t$, $y = t^2$. The equation of any tangent at t is 2xt = $y + t^2$. Differentiating, we get 2t = y₁. Putting this value in the equation of tangent, we have 2 x $y_1/2 = y + (y_1/2)^2 \Rightarrow$ $4xy_1 = 4y + y_1^2$ The order of this equation is one.
- **29.** 2
- **Sol.** We have, $y^2 = 4a(x + a)...(1)$ On differentiating w.r.t. x, we get

$$
2y \frac{dy}{dx} = 4a \Rightarrow a = \frac{y}{2} \frac{dy}{dx}.
$$

 On substituting the value of a in equation (1), we get

$$
y^{2} = 2y \frac{dy}{dx} \left[x + \frac{y}{2} \frac{dy}{dx} \right]
$$

\n
$$
\Rightarrow y = 2x \frac{dy}{dx} + y \left(\frac{dy}{dx} \right)^{2}
$$

\n
$$
\Rightarrow y \left[1 - \left(\frac{dy}{dx} \right)^{2} \right] = 2x \cdot \frac{dy}{dx}
$$

 which is the required differential equation. The degree of the differential equation is 2.

,

30. 5

Sol.
$$
\alpha
$$
 (t) + β ' (t) = 1....(1)
\n α' (t) + β (t) = 1(2)
\nAdd (1) and (2)
\n $(\alpha + \beta) + (\alpha' + \beta') = 2$
\n \therefore $(\alpha + \beta) + (\alpha + \beta)' = 2$
\n $(\alpha + \beta) = y$
\n \therefore $\frac{dy}{dt} + y = 2$ I.F. = e^t
\n $y \cdot e^{t} = 2e^{t} + C$
\n $(\alpha(t) + \beta(t))e^{t} = 2e^{t} + C$
\nPut t = 0
\n $2 + 1 = 2 + C$
\n $C = 1$
\n \therefore $\alpha(t) + \beta(t) = 2 + e^{-t}$ (3)
\nIIIly (1) – (2)
\n $(\alpha - \beta) - (\alpha - \beta)' = 0$
\n $(\alpha - \beta)' - (\alpha - \beta) = 0$
\n $\frac{dy}{dt} - y = 0$ I.F. = e^{-t}
\n $ye^{-t} = C$
\n $y = C e^{t}$
\n $\alpha(t) - \beta(t) = C e^{t}$ Put t = 0
\n $2 - 1 = C$ \therefore C = 1
\n $\alpha(t) - \beta(t) = e^{t}$ (4)
\n \therefore Put t = In 2 in (3) & (4) and add
\n $2\alpha(h 2) = 2 + \frac{1}{2} + 2 = 4 + \frac{1}{2} = \frac{9}{2}$
\n $\alpha(h 2) = \frac{9}{4} = \frac{p}{q}$
\n \therefore p - q = 9 - 4 = 5

6