JEE MAIN ANSWER KEY & SOLUTIONS

SUBJECT:-MATHEMATICS

CLASS :- 12th PAPER CODE:- CWT-10

CHAPTER: - DIFFERENTIAL EQUATION

ANSWER KEY													
1.	(B)	2.	(C)	3.	(A)	4.	(B)	5.	(A)	6.	(C)	7.	(C)
8.	(A)	9.	(D)	10.	(B)	11.	(B)	12.	(A)	13.	(C)	14.	(C)
15.	(B)	16.	(C)	17.	(C)	18.	(B)	19.	(A)	20.	(D)	21.	2
22.	48	23.	40	24.	79	25.	3	26.	5	27.	7	28.	1
29.	2	30.	5										

1. (B)

$\frac{1}{1+y^2} \cdot \frac{dy}{dx} + 2x(tan^{-1}y) = x^3$ Sol. Put $tan^{-1}y = z$ $\therefore \frac{1}{1+v^2} \cdot \frac{dy}{dx} = \frac{dz}{dx}$

$$\frac{\mathrm{d}z}{\mathrm{d}x} + (2x)z = x^3$$

$$\Rightarrow z. e^{x^2} = \frac{1}{2} \int 2e^{x^2}.x^3 dx + C$$

$$\Rightarrow 2e^{x^2} (\tan^{-1} y) = x^2 e^{x^2} - e^{x^2} + 2C$$

$$\Rightarrow$$
 2tan⁻¹y = x² - 1 + 2C e^{-x²}

2.

Sol. The intersection of
$$y - x + 1 = 0$$
 and $y + x + 5 = 0$ is $(-2, -3)$. Put $x = X - 2$, $y = Y - 3$.

The given equation reduces to $\frac{dY}{dX}$ =

 $\frac{Y-X}{Y+Y}$. This is a homogeneous equation,

so puttig Y = vX, we get

$$\begin{split} & X \frac{d\upsilon}{dX} = -\frac{\upsilon^2 + 1}{\upsilon + 1} \\ \Rightarrow & \left(-\frac{\upsilon}{\upsilon^2 + 1} - \frac{1}{\upsilon^2 + 1} \right) d\upsilon = \frac{dX}{X} \\ \Rightarrow & -\frac{1}{2} \log \left(\upsilon^2 + 1 \right) - \tan^{-1}\upsilon = \log |X| + C \\ \Rightarrow & \log \left(Y^2 + X^2 \right) + 2 \tan^{-1} \frac{Y}{X} = C \end{split}$$

$$\Rightarrow \log ((y + 3)^2 + (x + 2)^2) + 2 \tan^{-1} \frac{y+3}{x+2}$$

= C

Sol.
$$2 \times \cos y \, dx + y^2 \cos x \, dx + 2y \sin x \, dy - x^2 \sin y \, dy = 0$$
$$\Rightarrow (2 \times \cos y \, dx - x^2 \sin y \, dy) + (y^2 \cos x \, dx + 2y \sin x \, dy) = 0$$

$$\Rightarrow d(x^2 \cos y + y^2 \sin x) = 0$$

\Rightarrow x^2 \cos y + y^2 \sin x = C

SOLUTIONS

(B)

Sol.
$$x = r \cos\theta, y = \sin\theta,$$

$$\frac{dr}{|-r^2|} = d\theta \rightarrow \sin^{-1}r + \theta + \alpha$$

$$\Rightarrow r = \sin(\theta + \phi)$$

$$r^2 = y\cos\alpha + x\sin\alpha$$

$$x^2 + y^2 - x\sin\alpha - y\cos\alpha = 0$$

$$\therefore \text{ radius} = 1/2$$

5. (A)

Sol. Rearrange the diff. equation

$$xdx + \frac{ydx - xdy}{y^4} = 0$$

$$x^3dx + \frac{x^2}{y^2} \cdot \frac{ydx - xdy}{y^2} = 0$$

$$x^3dx + \left(\frac{x}{y}\right)^2 \cdot \frac{d}{dx} \cdot \left(\frac{x}{y}\right) = 0$$
integratings $\frac{x^4}{4} + \frac{1}{3} \left(\frac{x}{y}\right)^3 + c$

Sol.
$$\therefore \frac{dy}{dx} + y = f(x)$$

solution will be $y \cdot e^{X} = \int f(x)e^{x} dx$

(i) If
$$0 \le x \le 2$$
, $y \cdot e^{X} = \int e^{-x} \cdot e^{x} dx = x + c$

$$\therefore$$
 y(0) = 1

$$\therefore$$
 y = $\frac{x+1}{e^x}$

(ii) If
$$x > 2$$

$$\mathbf{y} \cdot \mathbf{e}^{\mathbf{X}} = \int \mathbf{e}^{-2} \cdot \mathbf{e}^{\mathbf{x}} \, d\mathbf{x} = \int \mathbf{e}^{\mathbf{x} - 2} \, d\mathbf{x}$$

$$\Rightarrow$$
 y $e^X = e^{X-2} + c_1$

$$\Rightarrow$$
 y = e⁻² + c₁e^{-X}

function is continuous at x = 2

$$\therefore \frac{3}{e^2} = \frac{1}{e^2} + \frac{c_1}{e^2} \Rightarrow c_1 = 2$$

$$y(x) = \begin{cases} \frac{x+1}{e^x}, & 0 \le x \le 2 \\ \frac{1}{e^2} + \frac{2}{e^x}, & x > 2 \end{cases}$$

$$\therefore$$
 y(3) = $\frac{1}{e^2} + \frac{2}{e^3} = \left(\frac{e+2}{e^3}\right)$

$$dy/dx = mu^{m-1} \frac{du}{dx}$$

The given differential equation becomes

$$2x^4.u^m. mu^{m-1} \frac{du}{dx} + u^{4m} = 4x^6$$

$$\Rightarrow \frac{du}{dx} = \frac{4x^6 - u^{4m}}{2mx^4x^{2m-1}}$$

For homogeneous equation degree should be same in numerator & denominator so, $6 = 4m = 4 + 2m - 1 \Rightarrow m = 3/2$

Sol. We have
$$\frac{y_3}{y_2} = 8 \Rightarrow \ell n \ y_2 = 8x + C_1$$

Putting x = 0, we have $C_1 = \log y_2(0) = \log 1 = 0$

∴
$$\log y_2 = 8x \text{ or } y_2 = e^{8x}$$

i.e.
$$y_1 = \frac{e^{8x}}{8} + C_2$$

Again, putting x = 0, we have $C_2 = -\frac{1}{8}$

So,
$$y_1 = \frac{1}{8} (e^{8x} - 1) \Rightarrow y = \frac{1}{8} \left(\frac{e^{8x}}{8} - x \right) + C_3$$

Putting x = 0, we have $C_3 = \frac{1}{8} - \frac{1}{64} = \frac{7}{64}$

Thus y =
$$\frac{1}{8} \left(\frac{e^{8x}}{8} - x + \frac{7}{8} \right)$$

Sol.
$$y = e^{4x} + 2e^{-x}$$

$$\frac{dy}{dx} = 4e^{4x} - 2e^{-x} \implies \frac{d^2y}{dx^2} = 16e^{4x} + 2e^{-x}$$

$$\frac{d^3y}{dx^3}$$
 = 64e^{4x} - 2e^{-x}

$$\therefore \frac{\frac{d^3y}{dx^3} - 13\frac{dy}{dx}}{y}$$

$$= \frac{(64e^{4x} - 2e^{-x}) - 13(4e^{4x} - 2e^{-x})}{e^{4x} + 2e^{-x}}$$

$$=\frac{12e^{4x} + 24e^{-x}}{e^{4x} + 2e^{-x}} = 12$$

$$\therefore \ \frac{k}{3} = 4.$$

10. (B)

Sol. Solving the equations of the asymptotes the centre is x = 1 and y = 0, since $e = \sqrt{2}$ the equation of the family of the hyperbola

the equation of the family of the hy

$$\frac{(x-1)^2}{a^2} - \frac{(y)^2}{a^2} = 1$$

$$\Rightarrow 2(x-1) - 2y \frac{dy}{dx} = 0$$

 \Rightarrow (x – 1) = yy' is differential equation.

11. (B)

Sol. Let the curve be y = f(x). The equation of tangent at any point (x, y) is given by Y - y = f'(x) (X - x). So the portion of the axis of x which is cut off between the origin and the tangent at any point is obtained by putting Y = 0. Therefore,

$$x - \frac{y}{f'(x)} = Ky \Rightarrow x - y \frac{dx}{dy} = Ky \Rightarrow \frac{dx}{dy} - \frac{x}{y} = -K$$

which is a linear equation in x, so its

integrating factor is $e^{-\int (1/y)dy} = y^{-1}$. Therefore, multiplying by y^{-1} , we have

$$\frac{d}{dy}(xy^{-1}) = -Ky^{-1} \Rightarrow xy^{-1} = -K \log y + C$$

 \Rightarrow x = y (C –K log y)

where C is arbitrary constant.

12. (A)

Sol.
$$\left(\frac{dx}{x} - \frac{dy}{y}\right) + \left(\frac{x^2 dy - y^2 dx}{(x - y)^2}\right) = 0$$

$$\left(\frac{\mathrm{dx}}{x} - \frac{\mathrm{dy}}{y}\right) + \frac{\left(\frac{\mathrm{dy}}{y^2} - \frac{\mathrm{dx}}{x^2}\right)}{\left(\frac{1}{y} - \frac{1}{x}\right)^2} = 0$$

$$\left(\frac{\mathrm{dx}}{\mathrm{x}} - \frac{\mathrm{dy}}{\mathrm{y}}\right) + \left[\frac{\frac{\mathrm{dy}}{\mathrm{y}^2} - \frac{\mathrm{dx}}{\mathrm{x}^2}}{\left(\frac{1}{\mathrm{x}} - \frac{1}{\mathrm{y}}\right)^2}\right] = 0$$

$$\ln |x| - \ln |y| - \frac{1}{\left(\frac{1}{x} - \frac{1}{y}\right)} = c$$

$$\ln \left| \frac{x}{y} \right| + \frac{xy}{x - y} = c$$

13. (C)

Sol. We can write $y = A \cos (x + B) - Ce^x$ where $A = c_1 + c_2$, $B = c_3$ and $C = c_4 e^{c_5}$

$$\frac{dy}{dx} = -A \sin(x + B) - Ce^{x}$$

$$\Rightarrow \frac{d^2y}{dx^2} = -A\cos(x+B) - Ce^x$$

$$\Rightarrow \frac{d^2y}{dx^2} + y = -2Ce^x$$

$$\Rightarrow \frac{d^3y}{dx^3} + \frac{dy}{dx} = -2Ce^x = \frac{d^2y}{dx^2} + y$$

$$\Rightarrow \frac{d^3y}{dx^3} - \frac{d^2y}{dx^2} + \frac{dy}{dx} - y = 0$$

Which is a differential equation of degree 1. Hence (C) is the correct answer.

Sol. We have,
$$y - x \frac{dy}{dx} = a \left(y^2 + \frac{dy}{dx} \right)$$

 $\Rightarrow y dx - x dy = ay^2 dx + ady$
 $\Rightarrow y (1 - ay) dx = (x + a) dy$
 $\Rightarrow \frac{dx}{x + a} - \frac{dy}{y(1 - ay)} = 0$

Integrating, we get

$$\log (x + a) - \log y + \log (1 - ay) = \log c$$

$$\Rightarrow \log \frac{(a+x)(1-ay)}{y} = \log c \Rightarrow (x + a)$$

$$(1 - ay) = cy.$$

Since the curve passes through $\left(a, -\frac{1}{a}\right)$,

∴ 2a × (1 + 1) =
$$-\frac{c}{a}$$
 ⇒ c = $-4a^2$.

So, the equation of curve is $(x + a) (1 - ay) = -4a^2y$. Hence (C) is the correct answer

15. (B)

Sol. We have,
$$x dy = \left(y + \frac{xf(y/x)}{f'(y/x)}\right) dx$$

$$\Rightarrow \frac{dy}{dx} = \frac{y}{x} + \frac{f(y/x)}{f'(y/x)} \text{ which is homogeneous.}$$

Put y = Vx
$$\Rightarrow \frac{dy}{dx}$$
 = V + x $\frac{dV}{dx}$,

We obtain

$$V + x \frac{dV}{dx} = V + \frac{f(V)}{f'(V)} dV$$
$$\Rightarrow \frac{f'(V)}{f(V)} dV = \frac{dx}{x}$$

f(V) x Integrating, we get

$$\Rightarrow \log f(V) = \log \operatorname{cx} \Rightarrow f\left(\frac{y}{x}\right) = \operatorname{cx}.$$

Hence (B) is the correct answer.

Sol. We have,
$$\frac{dy}{dx} = \frac{y}{x - 2\sqrt{xy}}$$
 which is homogeneous.

Put y = Vx so that
$$\frac{dy}{dx} = x \frac{dV}{dx} + V$$

$$\Rightarrow x \frac{dV}{dx} = \frac{V}{1 - 2\sqrt{V}} - V = \frac{2V^{3/2}}{1 - 2\sqrt{V}}$$

$$\Rightarrow \frac{dx}{x} = \frac{1 - 2\sqrt{V}}{2V^{3/2}} dV = \left(\frac{1}{2V^{3/2}} - \frac{1}{V}\right) dV$$

Integrating, we get

$$-c + \log x = -V^{-1/2} - \log V$$

$$= -\sqrt{\frac{x}{v}} - \log y + \log x$$

$$\Rightarrow \log y + \sqrt{\frac{x}{y}} = c.$$

Hence (C) is the correct answer.

17. (C)

Sol. The given equation is

$$\frac{dy}{dx} = \frac{yf'(x) - y^2}{f(x)}$$

$$\Rightarrow yf'(x) dx - f(x) dy = y^2 dx$$

$$\Rightarrow \frac{yf'(x)dx - f(x)dy}{y^2} = dx \Rightarrow d\left[\frac{f(x)}{y}\right] = dx$$

On integration, we get

$$\frac{f(x)}{y} = x + c \Rightarrow f(x) = y(x + c).$$

Sol. Given that,
$$\frac{dy}{dx} = \frac{2x - y}{x + 2y}$$
 ... (i)

Let
$$y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$\therefore v + x \frac{dv}{dx} = \frac{2 - v}{1 + 2v}$$

$$\Rightarrow x \frac{dv}{dx} = \frac{2 - v - v(1 + 2v)}{1 + 2v}$$

$$\Rightarrow \int \frac{1+2v}{2(1-v-v^2)} dv = \int \frac{1}{x} dx$$

$$\Rightarrow \log c - \frac{1}{2} \log (1 - v - v^2) = \log x$$

$$\Rightarrow$$
 2 log c - log (1 - v - v²) = 2 log x

$$\Rightarrow$$
 log c² = log [x² (1 - v - v²)] where c² = C

$$\Rightarrow$$
 C = $x^2 \left(1 - \frac{y}{x} - \frac{y^2}{x^2} \right)$

$$\Rightarrow$$
 $x^2 - xy - y^2 = C$

19.

Sol. Given,
$$\frac{dy}{dx} = \frac{x - y}{x + y}$$

This is a homogeneous equation

Put
$$y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$v + x \frac{dv}{dx} = \frac{1 - v}{1 + v}$$

$$\Rightarrow x \frac{dv}{dx} = \frac{1 - v}{1 + v} - v$$

$$\Rightarrow \frac{1 + v}{2 - (1 + v)^2} dv = \frac{dx}{x}$$

On integrating both sides

$$\int \frac{1+v}{2-(1+v)^2} dv = \int \frac{dx}{x}$$
Put $(1+v)^2 = t \Rightarrow 2(1+v) dv = dt$

$$\Rightarrow \frac{1}{2} \int \frac{dt}{2-t} = \int \frac{dx}{x}$$

$$\Rightarrow -\frac{1}{2} \log (2-t) = \log x + \log c$$

$$\Rightarrow -\frac{1}{2} \log [2-(1+v)^2] = \log xc$$

$$\Rightarrow -\frac{1}{2} \log [-v^2 - 2v + 1] = \log xc$$

$$\Rightarrow \log \frac{1}{\sqrt{1-2v-v^2}} = \log xc$$

$$\Rightarrow x^2c^2 (1-2v-v^2) = 1$$

$$\Rightarrow x^2c^2 \left(1-\frac{2y}{x} - \frac{y^2}{x^2}\right) = 1 \left[\because v = \frac{y}{x}\right]$$

$$\Rightarrow \frac{x^2c^2(x^2 - 2yx - y^2)}{x^2} = 1$$

$$\Rightarrow y^2 + 2xy - x^2 = c$$

20. (D)

Sol.

$$\Rightarrow x \, dy = (\sqrt{x^2 + y^2} + y) \, dx$$

$$\Rightarrow \frac{dy}{dx} = \frac{\sqrt{x^2 + y^2} + y}{x}$$
Now, put $y = vx$ and $\frac{dy}{dx} = v + x \, \frac{dv}{dx}$

$$\therefore v + x \, \frac{dv}{dx} = \frac{\sqrt{x^2 + v^2 x^2} + vx}{x}$$

$$\Rightarrow x \, \frac{dv}{dx} = \sqrt{1 + v^2} + v - v = \sqrt{1 + v^2}$$

Given that, x dy – y dx = $\sqrt{x^2 + y^2}$ dx

On integrating both sides

$$\int \frac{dv}{\sqrt{1+v^2}} = \int \frac{dx}{x}$$

$$\Rightarrow \log (v + \sqrt{1 + v^2}) = \log x + \log c$$

$$\Rightarrow y + \sqrt{x^2 + y^2} = cx^2$$

21.

Sol. We have,
$$\frac{dy}{dx} = \frac{ax+3}{2y+f}$$

 \Rightarrow (ax + 3) dx = (2y + f) dy
On integrating, we obtain
$$a \frac{x^2}{2} + 3x = y^2 + fy + c$$

$$\Rightarrow -\frac{a}{2} x^2 + y^2 - 3x + fy + c = 0$$
This will represent a circle, if
$$-\frac{a}{2} = 1 [\because \text{Coeff. of } x^2 = \text{Coeff. of } y^2]$$
and $\frac{9}{4} + f^2 - c > 0$ [Using $g^2 + f^2 - c > 0$]
$$\Rightarrow a = -2 \text{ and } 9 + 4f^2 - 4c > 0$$

22.

Sol. Let Population = x, time = t (in years)

Given
$$\frac{dx}{dt} \propto x \Rightarrow \frac{dx}{dt} = kx$$

Where k is a constant of proportionality

or
$$\frac{dx}{x}$$
 = k dt
Integrating, we get

 $\ln x = kt + \ln c$

$$\Rightarrow \ln\left(\frac{x}{c}\right) = kt \Rightarrow \frac{x}{c} = e^{kt}$$

If initially i.e., when time t = 0, $x = x_0$ then $x_0 = ce^0 = c$

 $x = x_0 e^{kt}$

Given $x = 2x_0$, t = 30then $2x_0 = x_0e^{30k}$ $\Rightarrow 2 = e^{30k}$

∴
$$\ln 2 = 30 \text{ k}$$
 ... (1)
To find t, when it triples, $x = 3x_0$
∴ $3x_0 = x_0e^{kt}$ $\Rightarrow 3 = e^{kt}$... (2)

Dividing (2) by (1) then
$$\frac{t}{30} = \frac{ln 3}{ln 2}$$

or $t = 30 \times \frac{ln 3}{ln 2} = 30 \times 1.5849 = 48$ years.

23. 40 min.

Sol. Let T be the temperature of the substance at a time t then $-\frac{dT}{dt} \propto (T - 290)$ $\Rightarrow \frac{dT}{dt} = -k (T - 290)$

> Where k is constant of proportionality and negative sign denote rate of cooling.

or
$$\frac{dT}{(T-290)} = -k dt$$

integrating, we get

$$\int \frac{dT}{(T-290)} = -k \int dt$$

$$\Rightarrow \ln (T-290) = -kt + \ln c$$

$$\Rightarrow \left(\frac{T-290}{c}\right) = e^{-kt}$$
or $(T-290) = ce^{-kt}$
If initially i.e., when $t = 0 \& T = 370$
Then $(370 - 290) = ce$

$$\therefore c = 80$$

$$\therefore T - 290 = 80e^{-kt} \qquad ... (1)$$
and for $t = 10$, $T = 330$

$$\therefore 330 - 290 = 80e^{-10k} \Rightarrow (40) = 80e^{-10k}$$

$$\Rightarrow 2 = e^{10k}$$

To find t, when T = 295

ln2 = 10 k

from (1),
$$295 - 290 = 80e^{-kt}$$

$$\Rightarrow \frac{5}{80} = e^{-kt} \qquad \Rightarrow \ln 16 = kt$$

Dividing (3) by (2) then
$$4 = \frac{t}{10}$$

 \therefore t = 40 minutes.

24. 79

Sol. Let x denote the population at a time t in years.

then
$$\frac{dx}{dt} \propto x \Rightarrow \frac{dx}{dt} = kx$$

when k is a constant of proportionality.

Solving
$$\frac{dx}{dt}$$
 = kx, we get

$$\int \frac{dx}{x} = \int k \, dt \Rightarrow \log x = kt + c$$
$$\Rightarrow x = e^{kt + c}$$

$$\Rightarrow$$
 x = x_0e^{kt}

Where x_0 is the population at time t = 0.

Since it doubles in 50 years, at t = 50, we must have $x = 2x_0$.

Hence
$$2x_0 = x_0 e^{50 \text{ k}} \Rightarrow 50 \text{ k} = \log 2$$

$$\Rightarrow$$
 k = $\frac{\log 2}{50}$ so that x = $x_0 e^{\frac{\log 2}{50}t}$

To find t, when it triples, $x = 3x_0$

$$\Rightarrow 3x_0 = x_0 e^{\frac{\log 2}{50}t} \Rightarrow \log 3 = \frac{\log 2}{50}t$$

$$\Rightarrow$$
 t = $\frac{50 \log 3}{\log 2}$ = 79 years.

25. 3

Sol.
$$\frac{\mathrm{d}y}{\mathrm{d}x} = y + 1$$

variable sep.

$$\int \frac{dy}{y+1} = \int dx \Rightarrow \log (y + 1) = x + c, y(0) = 1$$

$$log 2 = c$$

So
$$\log (y + 1) = x + \log 2$$

$$\log (y + 1) = 2 \log 2 = \log 4$$

$$y + 1 = 4$$

26. 0005

Sol. Let y(t) denote the number of people who know the rumour at time t. Maximum value of y(t) is 5000, y(0) = 100 and y(2) = 500. Also

$$\frac{dy}{dt}$$
 (xy (5000 – y) = $\frac{dy}{dt}$ = ky(5000 – y)

Separating variables and integrating we get :

$$\int \frac{\mathrm{dy}}{y(5000-y)} = kt + c$$

$$\Rightarrow \frac{1}{5000} \log \frac{y}{5000 - y} = kt + c$$

$$\Rightarrow \frac{y}{5000 - y} = \text{Const. } e^{5000\text{kt}} = \text{ke}^{5000\text{kt}}$$

$$\Rightarrow$$
y(1 + ke^{5000kt}) = 5000ke^{5000kt}; put y(0) =

$$100 \Rightarrow 100(1 + k) = 5000 k$$

$$\Rightarrow$$
 k = 1/49. Using y(2) = 500

$$\Rightarrow$$
 500 (1 + ke^{10,000k}) = 5000ke^{10,000k}

$$\Rightarrow$$
 1 = 9 ke^{10,000k} \Rightarrow e^{10000k} = 49/9

$$\Rightarrow$$
 k = $\frac{1}{10,000}$ log 49/9

$$\therefore i \Rightarrow y = \frac{5000/49}{e^{-5000kt} + 1/49} = \frac{5000}{49e^{-5000kt} + 1}$$

To determine how long it will take for half the population to hear rumour,

$$2500 = \frac{5000}{1 + 49e^{-5000kt}}$$

$$\Rightarrow$$
 1 + 49e^{-5000kt} = 2 \Rightarrow e^{-5000kt} = 1/49

5000 kt =
$$\log 49 \Rightarrow t = \log 49/5000 k$$

$$\Rightarrow t = \frac{2\log 49}{\log 49 - \log 9} = \frac{2}{1 - \frac{\log 9}{\log 49}} = \frac{2}{1 - \frac{129}{229}}$$

= 4.58 days ≈ 5 days.

Sol.
$$y = Ax^{m} + Bx^{-n}$$

$$\Rightarrow \frac{dy}{dx} = Amx^{m-1} - nBx^{-n-1}$$

$$\Rightarrow \frac{d^{2}y}{dx^{2}} = Am (m-1) x^{m-2} + n (n+1) Bx^{-n-2}$$

Putting these values in $x^2 \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} = 12y$

We have = m (m + 1) $Ax^m + n (n - 1) Bx^{-n}$ = 12 ($Ax^m + Bx^{-n}$) \Rightarrow m (m + 1) = 12 or n (n - 1) = 12 \Rightarrow m = 3, -4 or n = 4, -3

28. 1

Sol. The parametric form of the given equation is x = t, $y = t^2$. The equation of any tangent at t is $2xt = y + t^2$. Differentiating, we get $2t = y_1$. Putting this value in the equation of tangent, we have $2 \times y_1/2 = y + (y_1/2)^2 \Rightarrow 4xy_1 = 4y + y_1^2$ The order of this equation is one.

29. 2

Sol. We have,
$$y^2 = 4a (x + a)...$$
 (1)
On differentiating w.r.t. x, we get
 $2y \frac{dy}{dx} = 4a \Rightarrow a = \frac{y}{2} \frac{dy}{dx}$.

On substituting the value of a in equation (1), we get

$$y^{2} = 2y \frac{dy}{dx} \left[x + \frac{y}{2} \frac{dy}{dx} \right]$$

$$\Rightarrow y = 2x \frac{dy}{dx} + y \left(\frac{dy}{dx} \right)^{2}$$

$$\Rightarrow y \left[1 - \left(\frac{dy}{dx} \right)^{2} \right] = 2x \cdot \frac{dy}{dx},$$

which is the required differential equation. The degree of the differential equation is 2.

Sol.
$$\alpha(t) + \beta'(t) = 1....(1)$$

 $\alpha'(t) + \beta(t) = 1....(2)$
Add (1) and (2)
 $(\alpha + \beta) + (\alpha' + \beta') = 2$
 $\therefore (\alpha + \beta) + (\alpha + \beta)' = 2$
 $(\alpha + \beta) = y$

$$\therefore \frac{dy}{dt} + y = 2 \qquad \text{I.F.} = e^{t}$$

$$y \cdot e^{t} = 2e^{t} + C$$

$$(\alpha(t) + \beta(t))e^{t} = 2e^{t} + C$$
Put $t = 0$

$$2 + 1 = 2 + C$$

$$C = 1$$

$$\begin{array}{c} \therefore & \alpha(t) + \beta(t) = 2 + e^{-t} & \dots (3) \\ ||||y|(1) - (2) & \\ (\alpha - \beta) - (\alpha - \beta)' = 0 & \end{array}$$

$$(\alpha - \beta)' - (\alpha - \beta) = 0$$

$$\frac{dy}{dt} - y = 0$$
 I.F. = e^{-t}

$$ye^{-t} = C$$

$$y = C e^{t}$$

$$\alpha(t) - \beta(t) = C e^{t}$$

$$2 - 1 = C$$

$$\alpha(t) - \beta(t) = e^{t}$$

$$\ldots (4)$$

$$\therefore \text{ Put } t = \ln 2 \text{ in (3) \& (4) and add}$$

$$2\alpha(\ln 2) = 2 + \frac{1}{2} + 2 = 4 + \frac{1}{2} = \frac{9}{2}$$

$$\alpha(\ln 2) = \frac{9}{4} = \frac{p}{q}$$

$$p - q = 9 - 4 = 5$$