SUD	JEE MAIN : CHAP SUBJECT :- MATHEMATICS		IER WISE TEST-10 DATE	
	SUBJECT :- MATHEMATICS CLASS :- 12 th		DATE	
	PTER :- DIFFERENTIAL EQUATION		SECTION	
	(SECT	ION A)		
1.	The general solution of the differential equation $\frac{dy}{dx} = (x^3 - 2x \tan^{-1}y) (1 + y^2)$ is-	6.	Let $\frac{dy}{dx}$ + y = f (x) where y is a continuous function of x with y(0) = 1	
	(A) $2\tan^{-1}x = y^2 - 1 + 2C e^{-x^2}$ (B) $2\tan^{-1}y = x^2 - 1 + 2C e^{-x^2}$		and $f(x) = \begin{cases} e^{-x}, & \text{if } 0 \le x \le 2\\ e^{-2}, & \text{if } x > 2 \end{cases}$. The value	
	(C) $2\tan^{-1}y = y^2 - 1 + 2C e^{-x^2}$ (D) $2\tan^{-1}x = x^2 - 1 + 2C e^{-x^2}$		of y(3) is equal to (A) $\frac{1}{e^2}$ (B) $\frac{e+1}{e^3}$	
2.	The solution of (y + x + 5)dy = (y - x + 1) dx is		(C) $\frac{e+2}{e^3}$ (D) $\frac{e-1}{e^3}$	
	(A) log ((y + 3) ² + (x + 2) ²) + tan ⁻¹ $\frac{y+3}{x+2}$ = C	7.	The real value of m for which the substitution	
	(B) $\log ((y + 3)^2 + (x - 2)^2) + \tan^{-1} \frac{y - 3}{x - 2} = C$		$y = u^m$ will transform the differentia equation	
	(C) $\log ((y + 3)^2 + (x + 2)^2) + 2 \tan^{-1} \frac{y + 3}{x + 2} = C$ (D) $\log ((y + 3)^2 + (x + 2)^2) + 2 \tan^{-1} \frac{y + 3}{x + 2} = C$		$2x^4y \frac{dy}{dx} + y^4 = 4x^6$ in to a homogeneous equation is	
	(D) $\log ((y+3)^2 + (x+2)^2) - 2 \tan^{-1} \frac{y+3}{x+2} = C$		(A) m = 0 (C) m = 3/2 (B) m = 1 (D) m = 2/3	
3.	Solution of differential equation $(2x \cos y + y^2) \cdot \cos x)dx +$ $(2y \cdot \sin x - x^2 \cdot \sin y)dy = 0$ is – $(A) x^2 \cdot \cos y + y^2 \cdot \sin x = C$ $(B) x \cdot \cos y - y \cdot \sin x = C$ $(C) x^2 \cdot \cos^2 y + y^2 \cdot \sin^2 x = C$	8.	The solution of $\frac{d^3y}{dx^3} - 8\frac{d^2y}{dx^2} = 0$ satisfying y(0) = 1/8, y ₁ (0) = 0 and y ₂ (0) = 1 is - (A) y = $\frac{1}{8} \left(\frac{e^{8x}}{8} - x + \frac{7}{8} \right)$	
4.	(D) x cos y + y sin x = C The solution curve of the differential equation,]		(B) $y = \frac{1}{8} \left(\frac{e^{8x}}{8} + x + \frac{7}{8} \right)$	
	$(xdx + ydy)\sqrt{x^2 + y^2} = (xdy - ydx)$ $\sqrt{1 - x^2 - y^2}$ are -		(C) $y = \frac{1}{8} \left(\frac{e^{8x}}{8} + x - \frac{7}{8} \right)$	
	 (A) circles of radius 1 through the origin (B) circles of radius 1/2 through the origin (C) circles not through the origin (D) pat the circles 	9.	(D) None of these If the function $y = e^{4x} + 2e^{-x}$ is a solution	
5.	(D) not the circles Solution of $(xy^4 + y) dx - xdy = 0$ is		of the differential equation $\frac{\frac{d^3y}{dx^3} - 13\frac{dy}{dx}}{y} =$	
	$(A) \ \frac{x^4}{4} + \left(\frac{x}{y}\right)^3 = c$		k, then the value of $\frac{k}{3}$ is (A) - 4 (B) 2 (C) 3 (D) 4	
	(B) $\frac{x^4}{4} + \frac{1}{3}\left(\frac{x}{y}\right)^2 = c$	10.	The differential equation of the family o hyperbolas with asymptotes as the line	
	(C) $\frac{x^4}{4} + 3\left(\frac{x}{y}\right)^2 = c$ (D) None of these		x + y = 1 and $x - y = 1$ is:(A) $yy' + x = 0$ (B) $yy' = (x - 1)$ (C) $yy'' + y' = 0$ (D) $y' + xy = 0$	

PG #1

11. The equation to the curve which is such that portion of the axis of x cut off between the origin and the tangent at any point is proportional to the ordinate of that point is

 $(A) x = y (C - K \log y)$ (B) $\log x = Ky^2 + C$ (C) $x^2 = y (C - K \log y)$ (D) None of these [K is constant of proportionality]

12. Solution of the differential equation

$$\begin{cases}
\frac{1}{x} - \frac{y^2}{(x - y)^2} \\
\frac{1}{y} + \frac{x^2}{(x - y)^2} - \frac{1}{y} \\
\frac{1}{y} + \frac{y}{y} = 0 \text{ is}
\end{cases}$$
(A) $\ln \left| \frac{x}{y} \right| + \frac{xy}{x - y} = c$
(B) $\frac{xy}{x - y} = ce^{x/y}$
(C) $\ln |xy| = c + \frac{xy}{x - y}$
(D) None of these

13. The degree of the differential equation whose general solution is given by

> $y = (c_1 + c_2) \cos (x + c_3) - \frac{c_4 e^{x+c_5}}{c_4 e^{x+c_5}}$ where c₁, c₂, c₃, c₄, c₅ are arbitrary constants, is -(A) 5 (B) 4 (C) 1 (D) 2

14. The equation of the curve passing through the point $\left(a,-\frac{1}{a}\right)$ and satisfying the

differential equation $y - x \frac{dy}{dx}$

=
$$a\left(y^2 + \frac{dy}{dx}\right)$$
 is -
(A) $(x + a)(1 + ay) = -4a^2y$
(B) $(x + a)(1 - ay) = 4a^2y$
(C) $(x + a)(1 - ay) = -4a^2y$
(D) None of these

- (SECTION B) 21. If the solution of the differential equation $\frac{dy}{dx} = \frac{ax+3}{2y+f}$ represents a circle, then the value of |a| is -
- 22. The population of a country increases at a rate proportional to the number of inhabitants. If the population doubles in 30 years, find after how many years the population will triple-

15.	Solution of the e	quation xdy =		
	$\left(y+xrac{f(y/x)}{f'(y/x)} ight)$ dx is -			
	(A) $f\left(\frac{x}{y}\right) = cy$	(B) $f\left(\frac{y}{x}\right) = cx$		
	(C) $f\left(\frac{y}{x}\right) = cxy$	(D) None of these		
16.	The general solution equation $[2\sqrt{xy} - x] dy$			
	(A) $\log x + \sqrt{\frac{y}{x}} = c$	(B) $\log y - \sqrt{\frac{x}{y}} = c$		
	(C) $\log y + \sqrt{\frac{x}{y}} = c$	(D) None of these		
17. Find the solution of difference		differential equation		
	$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\mathrm{y}f'(\mathrm{x}) - \mathrm{y}^2}{f(\mathrm{x})} -$			
	dx f(x) (A) f(x) = y (x - c) (C) f(x) = y (x + c)	(B) <i>f</i> (x) = y (c – x) (D) None		
18.	The general solution of	$f \frac{dy}{dt} = \frac{2x - y}{2x - y}$ is -		
	(A) $x^{2} - xy + y^{2} = c$ (C) $x^{2} + xy - y^{2} = c$	(D) $x^2 + xy^2 = c$		
19.	If $y' = \frac{x - y}{x + y}$, then its solution is -			
	(A) $y^2 + 2xy - x^2 = c$ (C) $y^2 - 2xy - x^2 = c$	(B) $y^2 + 2xy + x^2 = c$ (D) $y^2 - 2xy + x^2 = c$		
20.				
20.	The solution of the differential equation x dy - y dx = $\sqrt{x^2 + y^2}$ dx is -			
	$(\Lambda) \times I \overline{u^2 + u^2} = \alpha v^2$			

the

~f

anuation

برامير

4 E

Calutian

(A)
$$x + \sqrt{x^2 + y^2} = cx^2$$

(B) $y - \sqrt{x^2 + y^2} = cx$
(C) $x - \sqrt{x^2 + y^2} = cx$
(D) $y + \sqrt{x^2 + y^2} = cx^2$

The rate at which a substance cools in moving air is proportional to the difference between the temperatures of the substance and that of the air. If the temperature of the air is 290° K and the substance cools from 370° K to 330°K in 10 minutes, when will the temperature be 295°K -

PG #2

23.

- 24. If the population of a country doubles in 50 years in how many years will it triple under the assumption that the rate of increase is proportional to the number of inhabitants –
- 25. If y' = y + 1 and y(0) = 1 then values of y(ℓn 2) is-
- 26. A rumourspreeds through a population of 5000 people at a rate proportional to the product of the number of people who have heard it and the number who have not. Suppose that 100 people initiate the rumour and that a total of 500 people know the rumour after 2 dyas. How long will it take for half the people to hear the rumour.

 $(\log 9 / \log 49 = 129/229).$

- 27. If the solution of differential equation x^2 $\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} = 12y$ is $y = Ax^m + Bx^{-n}$ then find the value of m + n, if m & n $\in N$.
- **28.** The order of the differential equation of all tangent lines to the parabola $y = x^2$ is
- **29.** The degree of the differential equation, of which $y^2 = 4a (x + a)$ is a solution, is –
- **30.** Let α (t) and β (t) be differentiable functions on R such that α (0) = 2 and β (0) = 1. If α (t) + β ' (t) = 1 and α ' (t) + β (t) = 1 for all t \in [0, ∞), then the value of α (*I*n 2) is expressed in the lowest form as $\frac{p}{q}$. Find the value of (p - q).

https://prernaeducation.co.in

PG #3