JEE MAIN : CHAPTER WISE TEST-7			
			DATE
CLASS :- 12"			
CHAP	TER :- ALKYL HALIDE		SECTION
1.	Which reaction is termed as Darzen's Reaction? (A) ROH + HCl (B) ROH + PCl ₅ (C) ROH + SOCl ₂ (D) ROH + PCl ₃	ION A) 9.	Isocyanidereactioninvolvestheintermediate formation of -(A) :CCl_2(B) CH_3^+ (C) CH_3^- (D) CCl_3^-
2.	The best reagent for converting ethanol to chloroethane is - (A) PCl_3 (B) PCl_5 (C) $SOCl_2$ (D) $HCl + ZnCl_2$	10.	Chloroform when treated with aniline and alcoholic KOH forms - (A) Phenyl cyanide (B) Phenyl isocyanide (C) Phenyl cyanate
0.	 (A) A sodium salt of an acid reacts with bromine. (B) A calcuim salt of an acid reacts with HBr. (C) A silver salt of an acid reacts with bromine. (D) A silver salt of an acid reacts with HBr. 	11.	The hydrogen atom in chloroform is - (A) Acidic (B) Basic (C) Neutral (D) None of these
4.	Chlorobenzene is - (A) More reactive than ethyl bromide. (B) More reactive than isopropyl chloride. (C) As reactive as methyl chloride. (D) Less reactive than benzyl chloride.	12.	$\begin{array}{c} H \\ Br \\ H \\ CH_{3} \\ (p) \text{ is.} \end{array} (p). \text{ The product}$
5.	When ethyl bromide is treated with moist Ag ₂ O the product is - (A) Ethyl ether (B) Ethanol (C) Ethoxyethane (D) All of the above	13.	(C) $(D) /(D) /(D)$ Br $Zn \rightarrow (D) + ZnBr_2$
6.	$\begin{array}{c} CH_{3}Br \xrightarrow{AgCN} A \xrightarrow{H_{2}O^{+}} B, \ [B] \ is \ . \\ (A) \ CH_{3} \ NH_{2} \qquad \qquad (B) \ (CH_{3}) \ NH \\ (C) \ C_{2}H_{5} \ NH_{2} \qquad \qquad (D) \ CH_{3}COOH \end{array}$		This reaction is a case of (A) α -elimination (B) β -elimination (C) γ -elimination (D) none of these
7.	2,2-Dichloropropane on hydrolysis yields - (A) Acetone (B) 2,2-Propane diol (C) Isopropyl alcohol (D) Acetaldehyde	14.	ReactionRate of reaction(A) $HO^- + R - CH_2 - I \longrightarrow$ (P) 1(B) $HO^- + R - CH_2 - Br \longrightarrow$ (Q) 200(C) $HO^- + R - CH_2 - CI \longrightarrow$ (R) 10,000(D) $HO^- + R - CH_2 - F \longrightarrow$ (S) 30,000(A) $A \rightarrow S \rightarrow B \rightarrow R \rightarrow C \rightarrow Q \rightarrow D \rightarrow P$ (B) $A \rightarrow Q \rightarrow B \rightarrow R \rightarrow C \rightarrow S \rightarrow D \rightarrow P$ (C) $A \rightarrow S \rightarrow B \rightarrow Q \rightarrow C \rightarrow R \rightarrow D \rightarrow P$ (D) $A \rightarrow Q \rightarrow R \rightarrow Q \rightarrow C \rightarrow S \rightarrow D \rightarrow P$
8.	$\xrightarrow{\text{Agpowder}}(B) \xrightarrow{\text{H}_2\text{SO}_4}(C)$ $\xrightarrow{\text{Agpowder}}(B) \xrightarrow{\text{H}_2\text{SO}_4}_{\text{Hg}^{++}}(C)$ Product A, B & C are - (A) lodoform, acetylene & acetaldehyde (B) Tri-iodomethane, ethyne & acetone (C) lodoform, ethene & ethylene glycol (D) Ethene, iodoform & ethylhydrogen sulphate	15.	A gem dichloride is formed in the reaction except: (A) CH ₃ CHO and PCl ₅ (B) CH ₃ COCH ₃ and PCl ₅ (C) $OH 2PCl_5$ (D) $OH PCl_5$

https://prernaeducation.co.in

26.

$$x = \text{moles of HI consumed.}$$
Value of x is:
27.

$$(X) \text{Conc.HI} \rightarrow (X) \text{Conc.HI}$$

Value of (x) is:

 $Ph - CH - CH - CH_{2} \xrightarrow{(x) \text{ NaNH}_{2}} Ph - C \equiv \overline{C} \overset{+}{Na}$ $Br \qquad (x = No. \text{ of moles of NaNH}_{2})$ 28. Value of x is :

Br $\dot{\mathbf{P}}_{\mathbf{P}}^{\dagger} - \mathbf{C}\mathbf{H}_{2} - \mathbf{C}\mathbf{H}_{3}$ 29. $\dot{C}H_2 - CH_2 - CH_3$

> Total number of products obtained when this substrate is subjected to E2 reaction will be (including stereoisomer):

30.
$$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$$

Total number of SN1 + E1 products obtained will be -

