JEE MAIN ANSWER KEY & SOLUTIONS

SUBJECT :- CHEMISTRY CLASS :- 12 th CHAPTER :- P-BLOCK										PAPER CODE :- CWT-4				
	ANSWER KEY													
1. 8. 15. 22. 29.	(A) (A) (D) 2 6	2. 9. 16. 23. 30.	(B) (C) (D) 3 4	3. 10. 17. 24.	(C) (B) (A) 6	4. 11. 18. 25.	(B) (D) (D) 10	5. 12. 19. 26.	(D) (D) (D) 5	6. 13. 20. 27.	(C) (D) (B) 3	7. 14. 21. 28.	(C) (D) 4 8	
						SOLU	TIONS							
1. Sol.	(A) Red P does not produce phosphine on heating with NaOH]							(A)(a) (F); As the sizeof halogen atom increases crowding on Si atom will increase, hence tendency of attack of Lewis base decreases.						
2. Sol.	(B) XeF ₄ + SbF ₅ \longrightarrow [XeF ₃] ⁺ [SbF ₆] ⁻ [XeF ₃] ⁺ : sp ³ d Bent-T-shape [SbF ₆] ⁻ : sp ³ d ² octahedral]							(b) (T); M.P. of NH_3 is highest due to intermolecular H–bonding in it. Next lower M.P. will be of SbH_3 followed by AsH_3 due to high mol. wt. of SbH_3 (c) (F); M.P. & B.P. of increase from PH_3 to SbH_3						
3. Sol.	(C) I ₂ + 1													
4. Sol.	(B) KHSO ₄ suppresses the dissociation of H_2SO_4 due to common ion effect.]							Increasing B.P. order: PH ₃ < AsH ₃ < NH ₃ < SbH ₃ (d) (T); Value of bond moment decreases]						
5. Sol.	(D) In SF ₆ , S is sterically hindered by six fluorine atoms hence attack of H_2O molecule will not occur. NF ₃ is not hydrolysed due to absence of						9. Sol. 10.	3, 5 &	 (C) I does not have its valency 4. It has valency 1, 3, 5 & 7] (B) 					
	vacant orbital either on N or <mark>F ato</mark> m. TeF ₆ is hydrolysed due to large size of Te]							(b) $PCI_5 + H_2O \longrightarrow POCI_3 + 2HCI$ (A) (B) $POCI_3 + 3H_2O \longrightarrow H_3PO_4 + 3HCI$ (B) (C) (D) NH_3 is a weak reducing agent than PH_3 , because X–H bond strength decreases down the group. Due to absence of H–bonding, only weak vander waals force of attraction exists in PH_3 , it has lower critical temperature than NH_3 .]						
6.	(C) 0 0													
Sol.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
		Ŝ−ОН + ∥ О	Н-О-	O−Ŝ−O ∥ O	9 – H		12.	(D)	¥					
	(Sul	phuric Ac		roxomoi Acid)	no-sulph	uric]		d of the second	Å	r				
7. Sol.	accor arour & bro sever	to large mmodate nd it while omine ato n fluorine of chlorir	e upto se e due to so oms the atoms ie	ven sma smaller y do no e steric fa	all fluorin sizes of t accom	e atoms chlorine modate	Sol.	$\frac{1}{2} + \frac{1}{2}$	No. of ov + $\frac{1}{2}$ +1= mula Si	2.5	oms per	silicon	atom =	

case of chlorine & bromine.]

13. (D)

Sol. Due to small size of He, it escapes from interstitial spaces / voids of molecular lattice of quinols]

Sol. $PH_3 + H^+ \longrightarrow PH_4^+$ According to Drago's rule lone pair on phosphorus resides in almost pure s-orbital, hence due to nondirectional nature, its overlapping tendency is greatly reduced in comparision to a lone pair present in hybrid orbital, which is directional as present in NH_2

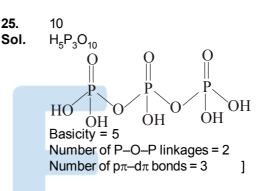
15. (D)

- **16.** (D)
- **Sol.** As PtF_6 is a powerful oxidizing agent hence. $Na + PtF_6 \rightarrow Na^+[PtF_6]^ NO + PtF_6 \rightarrow NO^+[PtF_6]^ Xe + PtF_6 \rightarrow Xe^+[PtF_6]^-]$
- **17.** (A)
- 18. (D)
 Sol. Vander Waal's force α size Boiling point α Vander waal's forces
- **19.** (D)
- **Sol.** Due to Back bonding]
- **20.** (B)
- **Sol.** AIF₃ is ionic. AIBr₃ and AII₃ exist as dimer.]
- **21**. 4

Sol. $3Cl_{2} + 6 OH^{-} \xrightarrow{\Delta} 5Cl^{-} + ClO_{3}^{-} + 3H_{2}O$ $\overset{Hot}{\&} (A) (B)$ Algebraic sum of oxidation state of Cl in A and B = -1 + 5 = + 4]

$$\begin{array}{cccc} & O & O \\ \parallel & H & \parallel & H \\ H - O - S - O + O - S - O - H \\ \parallel & O \\ \end{array} \xrightarrow{(OH \ OH)} OH \\ O \\ \\ 2H_2SO_4 + H_2O_2 \\ \end{array} \begin{array}{c} O \\ \end{array}$$

23.


3

Sol. $PCl_5 + 3H_2O \xrightarrow{Room}_{temperature} H_3PO_4 + 3HCl (basicity - 3)$ $SF_6 + H_2O \xrightarrow{Room}_{temperature} \times$ $SF_4 + 3H_2O \xrightarrow{Room}_{temperature} H_2SO_3 + 4HF (basicity - 2)$ $P_4O_6 + 6H_2O \xrightarrow{Room}_{temperature} 4H_3PO_3 (basicity - 2)$ $PCl_3 + 3H_2O \xrightarrow{Room}_{temperature} H_3PO_3 + 3HCl (basicity - 2)]$

24.

Sol.

6 Except CCl₄, NF₃ and SF₆, remaining Six would undergo hydrolysis.

26.

1

Sol. H₂S₂O₃

5

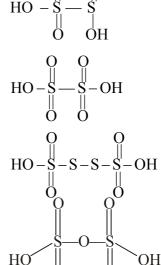
 $H_{2}S_{2}O_{5}$

 $H_2S_4O_6$

H₂S₂O₇

$$HO - S - S - OH$$

$$O O$$

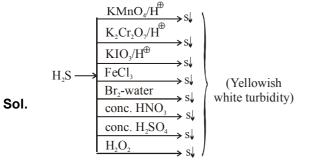

$$HO - S - S$$

$$HO - S - S$$

$$O OH$$

HC

$$H_2S_2O_6$$


OH

27. 3

Sol. ICN (liquid) = $[I_2(CN)]^+ [ICN_2]^-$ Total no. of CN = 3

28.

8

Sol. Cu, Hg, Ag, Pb will produced NO gas.

