

https://prernaeducation.co.in

11.	Number of the solution of the equation 2^x	16.	The number of values of x satisfying the
	= x - 1 + x + 1 is		equation $ 2x + 3 + 2x - 3 = 4x + 6$, is
	(A) 0 (B) 1 (C) 2 (D) ∞		(A) 1 (B) 2 (C) 3 (D) 4
12.	Number of integral values of 'x' satisfying the equation $3^{ x + 1 } - 2.3^{x} = 2. 3^{x} - 1 + 1$	17.	Number of prime numbers satisfying the inequality $ x^2 - 4x + 3 \ge 0$ is equal to
			Inequality $\log_3 \frac{2}{x^2+ x-5 } \ge 0$ is equal to
	(A) 1 (B) 2 (C) 3 (D) 4		(A) 1 (B) 2 (C) 3 (D) 4
13.	$ x^{2} + 6x + p = x^{2} + 6x + p \forall x \in R$ where p is a prime number then least possible value p is	18.	If $ x + 2 + y = 5$ and $x - y = 1$ then the value of $(x + y)$ is
	(A) 7 (B) 11 (C) 5 (D) 13		(A) 1 (B) 2 (C) 3 (D) 4
14.	If $(\log_{10}x)^2 - 4 \log_{10}x + 3 = 0$, the product of roots of the equation is : (A) 3 (B) 10^4 (C) 10^8 (D) 1	19.	The number of value of x satisfying the equation $ x - 1 ^A = (x - 1)^7$, where A =
15	The equation $ x - 1 + a = 4$ can have		(A) 1 (B) 2 (C) 0 (D) 3
15.	real solutions for x if a belongs to the interval	20.	The number of integral value of x
	(A) $(-\infty, 4]$		satisfying the equation $\left \log_{\sqrt{3}} x - 2 \right $ –
	(B) (4, ∞) (C) (−4, ∞)		$ \log_3 x - 2 = 2$
	(D) (–∞, –4) U(4, ∞)		(A) 1 (B) 2 (C) 3 (D) 4
(SECTION B)			
21.	The value of $81^{(1/\log_5 3)} + 27^{\log_9 36} + 3^{4/\log_7 9}$ is equal to	27.	The number of real values of the parameter k for which $(\log_{16} x)^2 - \log_{16} x + \log_{16} k = 0$ with real
22.	If $\log_5 a \cdot \log_a x = 2$, then x is equal to		coefficients will have exactly one solution
23.	If $A = \log_2 \log_2 \log_4 256 + 2\log_{1/2} 2$, then <i>A</i> is		
	equal to	28.	If $\left(\frac{2}{3}\right)^{x+2} = \left(\frac{3}{2}\right)^{2-2x}$, then $x =$
24.	If $a^x = b, b^y = c, c^z = a$, then value of xyz is		
25.	lf $\log_{10} 2 = 0.30103, \log_{10} 3 = 0.47712$, the number of digits in $3^{12} \times 2^8$ is	29.	If $x^{y} = y^{x}$, then $(x / y)^{(x / y)} = x^{(x / y) - k}$, where $k =$
26.	If <i>a</i> , <i>b</i> , <i>c</i> are distinct positive numbers, each different from 1, such that $[\log_b a \log_c a - \log_a a] + [\log_a b \log_c b - \log_b b]$ $+ [\log_a c \log_b c - \log_c c] = 0$, then <i>abc</i> =	30.	The remainder obtained when the polynomial $1 + x + x^3 + x^9 + x^{27} + x^{81} + x^{243}$ is divided by $x - 1$ is

https://prernaeducation.co.in