JEE MAIN : CHAPTER WISE TEST-7					
SUBJECT :- MATHEMATICS			DATE		
CHAPTER :- APPLICATION OF DERIVATIVES SECTION					
	-x ²	7	-) '.	A particle move from right to left along the	
1.	Point 'A' lies on the curve $y = e^{-x}$ and has the coordinate (x, e^{-x^2}) where x > 0. Point B has the coordinates (x, 0). If 'O' is the origin then the maximum area of the triangle AOB is (A) $\frac{1}{\sqrt{e}}$ (B) $\frac{1}{\sqrt{8e}}$			parabola y = $\sqrt{-x}$ in such a way that x- coordinate (measured in meters) decreases at the rate of 8 m/sec. At the moment when x = -4 the rate at which the angle of inclination θ of the line joining the particle to the origin is changing, is (A) - 0.4 (B) - 0.2	
	(C) $\frac{1}{\sqrt{2e}}$ (D) $\frac{1}{\sqrt{4e}}$			(C) - 0.5 $(D) - 1$	
2.	If P (x_1 , y_1), Q (x_2 , y_2) be any two points on the curve $y = 3x - 2 - x^2$ for $1 < x < 2$, then maximum value of $3x_1 + 3x_2 - x_1^2 - x_2^2$ is- (A) 9 (B) 4	8	5.	Difference between the greatest and the least values of the function $f(x) = x(\ln x - 2)$ on $[1, e^2]$ is (A) 2 (B) e (C) e^2 (D) 1	
	(C) 2 (D) $\frac{1}{2}$	9).	The function $y = f(x)$ is represented	
3.	The inflection points on the graph of			parametrically by $x = t^5 - 5t^3 - 20t + 7$ and y = $4t^3 - 3t^2 - 18t + 3$, (-2 < t < 2). The	
	function y = $\int_{0}^{0} (t-1)(t-2)^{2} dt$ are (A) x = -1 (B) x = 3/2 (C) x = 4/3 (D) x = 1			minimum of y = f(x) occurs at (A) t = -1 (B) t = 0 (C) t = $1/2$ (D) t = $3/2$	
4.	The radius of a right circular cylinder increases at the rate of 0.1 cm/min, and the height decreases at the rate of 0.2 cm/min. The rate of change of the volume	1	0.	A function f is defined by $f(x) = x ^{m} x - 1 ^{n}$ $\forall x \in \mathbb{R}$. The maximum value of the function is (m, n $\in \mathbb{N}$) -	
	of the cylinder, in cm ³ /min, when the radius is 2 cm and the height is 3 cm is 8π			(C) $\frac{m^m n^n}{(m+n)^{m+n}}$ (D) $\frac{(mn)^{mn}}{(m+n)^{m+n}}$	
	(A) $= 2\pi$ (B) $= \frac{\pi}{5}$ (C) $= \frac{3\pi}{5}$ (D) $\frac{2\pi}{5}$	1	1.	If θ is the angle (semi-vertical) of a cone of maximum volume and given slant height, then tan θ is given by	
5.	If $a < b < c < d \& x \in R$ then the least value of the function,			(A) 2 (B) 1 (C) $\sqrt{2}$ (D) $\sqrt{3}$	
	$ \begin{aligned} f(x) &= x - a + x - b + x - c + x \\ &- d is \\ (A) & c - d + b - a \\ (C) & c + d - b + a \end{aligned} (B) & c + d - b - a \\ (D) & c - d + b + a \end{aligned} $	1	2.	A particle is moving on the curve defined parametrically by the system of equation $x = 1 - 2 \cos^{2}t$ and $y = \cos t$ if the particle is closest to the origin when t	
6.	From a fixed point A on the circumference of a circle of radius r, the perpendicular AY is let fall on the tangent at P. The maximum area of the triangle APY is- (A) r^2 (B) $\frac{3\sqrt{3}}{4}r^2$			= cos ⁻¹ (a) for $0 \le t \le \pi/2$, then the value of 'a' is (A) $\frac{\sqrt{3}}{4}$ (B) $\frac{\sqrt{3}}{2}$ (C) $\sqrt{6}$ (D) $\sqrt{6}$	
	(C) $\frac{3\sqrt{3}}{8}$ r ² (D) $\sqrt{3}$ r ²			$(0)\frac{1}{4}$ $(0)\frac{1}{8}$	

PRERNA EDUCATION

https://prernaeducation.co.in

011-41659551 || 9312712114

PG #1

- **13.** Number of positive integral values of 'a' for which the curve $y = a^{X}$ intersects the line y = x is (A) 0 (B) 1 (C) 2 (D) More than 2
- **14.** Find the interval in which $f(x) = 2 \log (x-2)$ - $x^2 + 4x + 1$ is increasing ? (A) (2,3) (B) [2,3]
 - (C) (3,∞) (D) (−2,3)
- **15.** In a regular triangular prism the distance from the centre of one base to one of the vertices of the other base is *I*. The altitude of the prism for which the volume is greatest :

(A)
$$\frac{l}{2}$$
 (B) $\frac{l}{\sqrt{3}}$ (C) $\frac{l}{3}$ (D) $\frac{l}{4}$

- **16.** The point(s) of minimum of the function, $f(x) = 4x^3 - x |x - 2|$, $x \in [0, 3]$ is: (A) x = 0 (B) x = 1/3(C) x = 1/2 (D) x = 2
- 21. Find the greatest possible integral value of $\frac{b-a}{\tan^{-1}b-\tan^{-1}a}$, where $0 < a < b < \sqrt{3}$. 22. If the range of all real values of b for which the function $f(x) = (b^2 - 3b + 2) (\cos^2 x - \sin^2 x) + (b - 1) x + \sin 2$ does not possess any critical points on R
 - is (b_1, b_2) , then find the value of $(b_1 + b_2)$.
- **23.** Maximum value of the expression

$$\frac{10x^{12}}{x^{24} + 2x^{12} + 3x^{16} + 3x^8 + 1}$$
 is equal to

24. If all the real values of m for which the function f (x) = $\frac{x^3}{3} - (m-3)\frac{x^2}{2} + mx - 2013$ is strictly increasing in $x \in [0, \infty)$ is [0, k],

is strictly increasing in $x \in [0, \infty)$ is [0, k] then find the value of k.

- **17.** The complete set of values of k for which the function
 - $f(x) = \begin{cases} x, & -\infty < x < 2 \\ k, & x = 2 \\ x^2 2x + 4, & 2 < x < \infty \end{cases}$ is strictly increasing at x = 2, is (A) [2, 4) (B) (2, 4] (C) (2, 4) (D) [2, 4]

18. Set of value of b for which local extrema of the function f(x) are positive where

 $f(x) = \frac{2}{3}a^{2}x^{2} - \frac{5a}{2}x^{2} + 3x + b$ and maxima occurs at x = 1/3 is

- (A) (-4, ∞) (B) $\left(-\frac{3}{8},\infty\right)$ (C) $\left(-10,\frac{3}{8}\right)$ (D) None of these
- **19.** If $y = \frac{ax-b}{(x-1)(x-4)}$ has a turning point P(2,-1), find the value of a + b. (A) 1 (B) 0 (C) 3 (D) 4
- 20. a > b > 0 and $f(\theta) = \frac{(a^2 b^2)\cos\theta}{a b\sin\theta}$, then the maximum value of $f(\theta)$ is (A) $\sqrt{a^2 + b^2}$ (B) $\sqrt{a^2 - b^2}$ (C) a - b (D) a + b

(SECTION B)

25.

If l_1 and l_2 are the least and greatest distance between parallel tangents drawn to the curve $f(x) = x - \sin x$ where $x \in \left(\frac{-\pi}{6}, \frac{13\pi}{6}\right)$, then find the value $[l_1 + l_2]$. [Note : [k] denotes greatest integer less

[Note : [k] denotes greatest integer less than or equal to k.]

- **26.** Least value of the expression $9\sec^2\theta + 4\csc^2\theta$, is-
- 27. If $y^2 \frac{15y}{2} + \lambda = 0$ cuts the graph of the

function
$$y = 2x + \frac{1}{8x^2}$$
, $x > 0$ at three

distinct points, then find the value of λ .

PG #2

28. Let $f(x) = 1 + 3x^2 + 5x^4 + 7x^6 + \dots + 21$ $\cdot x^{20}$, $x \in \mathbb{R}$ and $g(x) = -x^2 + 4\cos^2 \theta - 4\sin \theta - 7$, $\theta \in \mathbb{R}$ If d is the shortest distance between f(x)& g(x) and d_1 , d_2 are the least and greatest value of d respectively, then find $\left(\frac{d_2}{d_1}\right)$.

- 29. Let $f(x) = \lim_{n \to \infty} \frac{x^{2n-1} + ax^3 + bx^2}{x^{2n} + 1}$ is continuous for all $x \in \mathbb{R}$. If points A(-a, 3) and B((b+1), -1) are points of relative maximum and minimum of a cubic polynomial y = g(x), then find the value of g(2).
- **30.** If $f(x) = 3 \tan x + (3a + 1) \ln |(\sec x + \tan x)| + ax$ is strictly increasing $\ln \left(0, \frac{\pi}{2}\right)$ then corresponding to minimum possible integral value of a, find the value of $(a^2 a + 1)$.

