	JEE MAIN : CHAPTER WISE TEST PAPER-5					
SUBJ			DATE			
CHAS	95 :- 12*** PTER :- LIMIT CONTINUITY DIFFERENTIABILITY		SECTION			
	(SECT	ion-a)				
	$\cot^{-1}\left(x^{-a} \log_{a} x\right)$	7	$\sin\frac{1}{4}\pi[x]$			
1.	The value of $\lim_{x \to \infty} \frac{1}{\sec^{-1}(a^x \log_x a)}$ (a > 1)	1.	following does NOT hold good?			
	is equal to		[Note: [y] denotes greatest integer function less			
	(A) 1 (B) 0		(A) f (x) is not continuous at any point.			
	(C) $\pi/2$ (D) does not exist		(B) f (x) is continuous at x = $\frac{3}{2}$.			
	$\sin(ax) + bx$		(C) f (x) is discontinuous at $x = 2$.			
2.	If $\lim_{x \to 0} \frac{\sin(ax) + 6x}{x^3} = 36$, then		(D) f (x) is differentiable at x = $\frac{4}{3}$.			
	(A) a = 6, b = -6 (B) a = -6, b = 6		5			
	(C) $a = 6, b = 6$ (D) $a = -6, b = -6$		$4x^{2} + 2[x]x \text{ if } -\frac{1}{2} \le x < 0$			
3	If $\lim_{x \to \sin x - x \cos x - \tan x}$ exists and	8.	Let f (x) = $\begin{bmatrix} ax^2 - bx & \text{if } 0 \le x < \frac{1}{2} \end{bmatrix}$			
0.	$x \to 0$ x^n		where[x] denotes the greatest integer function.			
	is non-zero finite value, then the value of n is (A) 3 (B) 4 (C) 5 (D) 6		(A) $f(x)$ is continuous in $\begin{pmatrix} 1 & 1 \\ \end{pmatrix}$ iff $a = 4$ and			
			(A) I(x) is continuous in $\left(-\frac{1}{2}, \frac{1}{2}\right)$ in a - 4 and b = 0			
	$(1 4 9 n^2)$		(B) $f(x)$ is continuous and differentiable in			
4.	If $\alpha = \lim_{n \to \infty} \left(\frac{1}{n^3 + 1} + \frac{1}{n^3 + 1} + \frac{1}{n^3 + 1} + \frac{1}{n^3 + 1} + \frac{1}{n^3 + 1} \right)$		$\left(-\frac{1}{2},\frac{1}{2}\right)$ iff a = 4, b = 2.			
	and $\beta = \lim_{n \to \infty} \frac{\sin 2x}{2n}$ then		(C) f(x) is continuous and differentiable in			
	$x \to 0 \sin 8x$		$\left(-\frac{1}{2},\frac{1}{2}\right)$ for all a, provided b = 2.			
	the quadratic equation whose roots are α , β		(D) for no choice of a and b, $f(x)$ is differentiable			
	IS (A) $12x^2 - 7x + 1 = 0$		$\operatorname{in}\left(-\frac{1}{2},\frac{1}{2}\right)$			
	(B) $x^2 + 19x - 120 = 0$					
	(C) $x^2 - 17x + 66 = 0$	9.	Let $f(x) =$			
	$(D) x^2 - 7x + 12 = 0$		$\operatorname{sgn}\left(\left(\sin\theta - \frac{\sqrt{3}}{2}\right)x^2 + \left(\cos\theta - \frac{1}{2}\right)x + (\tan\theta - \sqrt{3})\right).$			
5.	If $f(x) = \begin{cases} x^3 + 2x^2 + ax + 6, & x < 1 \\ 2 + 1 & x < 1 \end{cases}$		If $f(x)$ is identically zero for every $x \in R$, then			
	$(2x+b, x \ge 1)$		the number of values of θ in $[-2\pi, 2\pi]$, is [Note: sank denotes the signum function of k]			
	is differentiable for all $x \in R$, then the value of $(a + b)$ is equal to		(A) 0 (B) 1 (C) 2 (D) 3			
	(A) - 3 $(B) 7$ $(C) 5$ $(D) 2$	4.0	$\int x^2 \qquad \text{if} x \le x_0$			
6.	If $f(x) = san (3)x cos^{-1}x - 6 cos^{-1}x - \pi x + 2\pi$	10.	If $f(x) = \lfloor ax + b & if x > x_0 \end{bmatrix}$ derivable \forall			
	then the number of points of discontinuity of $f(x)$		$x \in R$ then the values of a and b are respectively			
	is/are		(A) $2x_0 , -x_0^2$ (B) $-x_0 , 2x_0^2$			
	(A) 2 (B) 0 (C) 1 (D) 3		(C) $-2x_0^2$, $-x_0^2$ (D) $2x_0^2$, $-x_0^2$			
			PG #1			

PRERNA EDUCATION

https://prernaeducation.co.in

011-41659551 || 9312712114

11.	Let f(x) be a differentiable function such that	16.	The value of p and q for which the function f
	$\lim_{h \to 0} \left(\frac{f(x+h)}{f(x)} \right)^{\frac{1}{h}} = e^{(\tan x) f(-x)} \text{ and } f(0)$		$\int \frac{\sin(p+1)x + \sin x}{x}, x < 0$
	=1, then the value of $f'(0)$ is equal to (A) 0 (B) 1 (C) e (D) - e		$(\mathbf{x}) = \begin{cases} \mathbf{x} \\ \mathbf{q}, \\ \sqrt{\mathbf{x} + \mathbf{r}^2}, \\ \sqrt{\mathbf{x}} \end{cases}$
12.	Let f(x) be a differentiable function which satisfies the equation		$\left(\frac{\sqrt{x+x}-\sqrt{x}}{x^{3/2}}, \qquad x>0\right)$
	f(xy) = f(x) + f(y) for all $x > 0$, $y > 0$ then f'(x) is equal to		is continuous for all x in R, is
	(A) $\frac{f'(1)}{x}$ (B) $\frac{1}{x}$		(A) $p = \frac{5}{2}$, $q = \frac{1}{2}$ (B) $p = \frac{-3}{2}$, $q = \frac{1}{2}$
13	(C) f'(1) (D) f'(1).($\ln x$)		(C) $p = \frac{1}{2}$, $q = \frac{3}{2}$ (D) $p = \frac{1}{2}$, $q = \frac{-3}{2}$
10.	$f(x) = (x + 1) x - a \text{ is differentiable } \forall x \in R, \text{ is}$ (A) 0 (B) 1 (C) 2 (D) more than 2	17.	If $f(x) = [x] \tan (\pi x)$ then $f'(k^+)$ is equal to (where k is some integer and $[x]$ denote
14.	The function f (x) =		(A) $(k - 1)\pi (-1)^k$ (B) $k\pi$
	$\begin{cases} 3-x^2 & \text{for } x \le -1 \\ 2 & \text{for } -1 < x < 1 \end{cases}$ is		(C) $k\pi (-1)^{k+1}$ (D) $(k-1)\pi \cdot (-1)^{k+1}$
	$1-x$ for $x \ge 1$	18.	If $\lim_{n \to \infty} \left(\sqrt{2n^2 + n} - \lambda \sqrt{2n^2} - n \right) = \frac{1}{\sqrt{2}}$
	(A) decreasing in $(-\infty, -1)$ (B) differentiable at x = -1		where $\lambda > 0$, then λ is equal to
	(C) continuous at $x = 1$ but discontinuous at $x = -1$ (D) continuous at $x = -1$ but discontinuous at $x = 1$		(A)-1 (B) 1 (C) $\frac{1}{\sqrt{2}}$ (D) $\sqrt{2}$
15.	If the function $f(x) =$		
	$\begin{cases} px^{3} + q, & 0 \le x \le 1\\ 2\cos(\pi x) + \tan^{-1} x, & 1 < x \le 2 \end{cases}$	19.	$\lim_{x \to \cot^{-1}(-1)} \left(\frac{\tan^3 x - 2\tan x - 1}{\tan^5 x - 2\tan x - 1} \right) \text{ is equal to}$
	is differentiable in [0, 2], then (A) p = $\frac{1}{6}$, q = $\frac{13}{6} - \frac{\pi}{6}$		(A) 1 (B) $\frac{1}{2}$ (C) $\frac{1}{3}$ (D) $\frac{1}{5}$
	(B) $p = \frac{1}{c}$, $q = \frac{\pi}{4} + \frac{13}{c}$	20.	If the function defined by $f(x)$
	(C)) $p = \frac{1}{6}, q = \frac{\pi}{4} - \frac{7}{3}$		$=\frac{\tan 2\pi x + \sin \frac{\pi x}{2} + \tan \frac{\pi x}{2}}{x^2 + 4x - 12}$ is continuous at
	(D) $p = \frac{1}{6}, q = \frac{\pi}{4} - \frac{13}{6}$		$x = 2$ then $f(2)$ (A) equals $\pi/4$ (B) equals $3\pi/8$ (C) equal 2π (D) is non existent
			P <u>G</u> #2

PRERNA EDUCATION

https://prernaeducation.co.in

011-41659551 || 9312712114

(SECTION-B)

21. If number of points of discontinuity of the function

f (x) = [2 + 10 sin x], in
$$x \in \left[0, \frac{\pi}{2}\right]$$
 is same as

number of points of non-differentiability of the function

$$g(x) = (x-1)(x-2)|(x-1)(x-2)....(x-2m)|,$$

 $(m \in N) \ \text{in} \ x \in \ (-\infty,\infty)$

then find the value of m.

[**Note :** [k] denotes largest integer less than or equal to k.]

22. Let
$$\lim_{p \to \infty} p \ln \left(e \left(1 + \frac{1}{p} \right)^{1-p} \right)$$
 equal $\frac{m}{n}$ where

m and n are relatively prime positive integer. Find (m + n).

=
$$\lim_{n \to \infty} ln \left(\sqrt{e^{\cos x} \sqrt{e^{3\cos x} \sqrt{e^{5\cos x} \dots \sqrt{e^{(2n+1)\cos x}}}} \right).$$

If $g(x) = \left[\frac{1}{3} f(x) \right]$, then find the number of

points in $[0, 2\pi]$ where g(x) is discontinuous. [Note: [y] denotes greatest integer function less than or equal to y.]

$$=\begin{cases} \frac{e^{\left((x-2)/\ln\sqrt{5^{x}}+\frac{1}{3x}\log_{2}\left((4^{x})^{3}\right)\right)}-e^{2}}{(x-2)\tan x}, \ x>0\\ \frac{1}{\lambda}\cdot\frac{\left(\left(\sqrt{5}\right)^{x}-1\right)\left(e^{x^{2}+2}-e^{2}\right)}{(2\sin x-\sin 2x)}, \ x<0\end{cases}$$

 $\label{eq:limit} \text{If } \lim_{x \to 0} f(x) \text{ exists then find the value of } \lambda.$

25. Let f be a biquadratic function of x such that

$$\lim_{x \to 0} \left(\frac{f(-x)}{2x^3} \right)^{\frac{1}{x}} = \frac{1}{e^3}, \text{ then find the value of}$$
$$|f(1)|.$$

26. Let
$$\lim_{n \to \infty} \frac{1 + cn^2}{(2n + 3 + 2 \sin n)^2} = \frac{1}{2}$$
. If $c \le \alpha$

 $\leq \beta$ where α and β are the roots of the quadratic equation $x^2 - 2px + p^2 - 1 = 0$, then find the minimum integral value of p.

$$= |x| + \left|\frac{x}{3} - 1\right| + \left|x| - \left|\frac{x}{3} - 1\right|\right|$$

in $x \in (-\infty, \infty)$.

28. If the value of

$$\lim_{x \to 2} \frac{\sqrt{x^2 - 2x + 9} - \sqrt{9 + 2x - x^2}}{\sqrt{(x - 1)^2 + 3} - \sqrt{5 - (x - 1)^2}} \quad \text{equals}$$

 $\frac{p}{q}$ where p and q are relatively

prime positive integers, then find the value of $\sin^{-1}(\sin(p+q)) + \cos^{-1}(\cos(p+q))$.

$$\begin{bmatrix} x \left(\frac{10 e^{\left(\frac{\{x\} + \{-x\}}{|x|}\right)} - 7}{3 + e^{|x|}} \right), & \text{for } x < 0 \\ 0, & \text{for } x = 0 \\ x \cdot \frac{8 - 8e^{|x| + \{x\}}}{|x| + \{x\}}, & \text{for } x > 0 \end{bmatrix}$$

If $f'(0^+) = p$ and $f'(0^-) = q$, then find the value of (p + q).

[Note: {k} denotes fractional part of k.]

30. Consider the function f(x) = x[x] {x} in interval [-1, 2]. If / denotes the number of point of discontinuity and m denotes the number of points of non-differentiability of function, then find the value of (/+m).

[Note: [k] and $\{k\}$ denotes greatest integer less than or equal to k and fractional part of k respectively.]

JEE CHAPTER-WISE TESTS

