JEE MAIN : CHAPTER WISE TEST PAPER-3			
SUBJECT :- PHYSICS			DATE
CLAS			NAME
(SECTION-A)			
1.	In the presence of an applied electric field (\vec{r})	8.	The unit of potential gradient is
	in a metallic conductor		(A) volt (B) volt/ampere
	(A) The electrons move in the direction of \vec{E}		(C) volt/meter (D) volt x meter
	(B) The electrons move in a direction opposite		The notentiameter wire 10 m long and 20 chm
	to Ē	9.	resistance is connected to a 3 volt emf battery
	(C) The electrons may move in any direction		and a 10 ohm resistance. The value of potential
	randomly, but slowly drift in the direction of $ec{E}$.		gradient in volt/m of the wire will be
	(D) The electrons move randomly but slowly drift		(A) 1.0 (B) 0.2 (C) 0.1 (D) 0.02
	in a direction opposite to \vec{E} .	10.	Two coils connected in series have resistances
2	A bester coil is cut into two equal parts and		600 Ω and 300 Ω at 20°C and temperature
	only one part is now used in the heater. The		coefficient of resistivity 0.001 k ⁻¹ and 0.004 k ⁻¹
	heat generated will now be :		The resistance of the combination at
	(A) doubled (B) four times		temperature 50°C is
			(A) 426 Ω (B) 954 Ω
3.	There are two wires of the same length and of		(C) 1806 Ω (D) 214 Ω
	of their specific resistance is	11.	Read the following statements carefully :
	(A) 1 : 2 (B) 1 : 1 (C) 1 : 4 (D) 4 : 1		Y : The resistivity of semiconductor decreases
4	If the length and cross-section of a wire is		with increase of temperature.
	doubled, then the resistance will		between free electrons and ions increases with
	(A) become half		increase of temperature.
	(B) Increase two times		Select the correct statement (s) from the
	(D) increase four times		following: (A) X is true but Z is false
5	When the registerion of compart wire is 0.1.0		(B) Y is false but Z is true
5.	and the radius is 1 mm, then the length of the		(C) Both Y and Z are true
	wire is (specific resistance of copper is $3.14 \times$		(D) Y is true and Z is the correct reason for Y
	10 ⁻ ⁸ ohm x m) (A) 10 cm (B) 10 m	12	A conductor with rectangular cross section has
	(C) 100 m (D) 100 cm		dimension (a \times 2a \times 4a) as shown in fig.
	•		Resistance across AB is x, across CD is y and
	REFER		across EF is z. Then
	ARA E RAL		
6.	X Find the equivalent		2a B
	RYR		A 4a a
	resistance between the X and Y		
	(A) 2R/3 (B) R/3 (C) 2 R (D) 3 R		$E D \bullet$
7.	Find the equivalent emf of the three batteries		(A) x - y - 2 $(B) x - y - 2(C) y > z > x$ $(D) x > z > y$
	as shown in the figure.		
		13.	Two wires of same dimension but resistivities
-	4V '		ρ_1 and ρ_2 are connected in series. The equivalent resistivity of the combination is
Ă	0.5Ω $4v$		(A) $\rho_1 + \rho_2$ (B) 1/2 ($\rho_1 + \rho_2$)
			(C) $\sqrt{0,0}$ (D) $2(0, \pm 0)$
	(A) 0 (B) 4 v (C) 8 v (D) 12 v	<u> </u>	$(\neg, \sqrt{P_1P_2})$
		- \ \	

16. The ammeter shown in figure consists of a 480 Ω coil connected in parallel to a 20 Ω shunt. Find the reading of the ammeter.

- (SECTION-B)
 21. A wire when connected to 220 V mains supply has power dissipation P₁. Now the wire is cut into two equal pieces which are connected in parallel to the same supply. Power dissipation in this case is P₂. Then P₂ : P₁ is x : y. so find the value of x+y = ?
- **22.** If in the circuit, power dissipation is 150 W then R is $\dots \Omega$.

23. A wire has a resistance of 12 ohms. If it is bent in the form of a circle. The effective resistance between (in Ω) the two points on any diameter is equal to

(A) 6

(A) 1:1

(C) P²: Q²

20.

(B) 8

branches (P + Q) and (R + S) is

(C) 12

(B) R : P

(D) P² : R²

Resistance P. Q. S and R are arranged in a

cyclic order to form a balanced Wheatstone's network. The ratio of power consumed in the

(D) 20

24. The total current (Amp.) supplied to the circuit by the battery is :

https://prernaeducation.co.in

- **25.** An electric current is passed through a circuit containing two wires of the same material, connected in parallel. If the lengths and radii of the wires are in the ratio of 4/3 and 2/3, then the ratio of the currents passing through the wire will be P : Q. find the value of Q
- 26. In a potentiometer experiment the balancing with a cell is at length 240 cm. On shunting the cell with a resistance of 2Ω , the balancing length becomes 120 cm. The internal resistance Ω of the cell is :
- 27. The resistance of bulb filament is 100Ω at a temperature of 100° C. If its temperature coefficient of resistance be 0.005 per °C, its resistance will become 200Ω at a temperature of °C.
- 28. An electric bulb is rated 220 volt 100 watt. The power (in watt) consumed by it when operated on 110 volt will be

- **29.** The current in the primary circuit of a potentiometer is 0.2 A. The specific resistance and cross-section of the potentiometer wire are 4×10^{-7} ohm metre and 8×10^{-7} m² respectively. The potential gradient (in V/m) will be equal to :
- **30.** In the following figure, the p.d. between the points M and N is balanced at 50 cm length. The balancing length in cm, for the p.d. between points N and C will be

