CLASS :- 12 th								PAPER CODE :- CWT-5							
CHAPTER :- D & F BLOCK															
1. 8. 15. 22. 29.	(B) (B) (C) 75 0.85 (B)	2. 9. 16. 23. 30.	(A) (B) (B) 6 2.84	3. 10. 17. 24.	(A) (D) (A) 60	4. 11. 18. 25. SOLU	(C) (A) (B) 6 ITIONS 8.	5. 12. 19. 26.	(D) (A) (D) 3.87	6. 13. 20. 27.	(A) (C) (C) 7	7. 14. 21. 28.	(C) (B) 4 18		
Sol.	Due to enter ir atoms o	larger nto voi of the c	r size pł d sites crystallin	nosphor betweer e metal.	us, doe: n the pa	s not acked	Sol.	due to d-d transition but due to charge transfer (from O to Mn) reducing the oxidation state of Mn from +7 to +6 momentarily.							
2. Sol.	(A) Cerium Its mos is also e	⁵⁸ Ce [t stable existing	Xe]4f ¹ 5 e oxidati g.	d ¹ 6s ² on state	e is +3 b	ut +4	9. Sol.	(B) Sc(Sc³	(B) Sc(21) $\uparrow \qquad $						
3. Sol.	(A) Cr ⁺ ha configu one mo filled o energy.	as sta ration, ore ele configu	able ha ¹⁸ [Ar] 3c ectron fi iration	alf fille d ⁵ 4s ⁰ . th rom this will ree	d elect ne remov s stable quire h	tronic val of half igher	10. Sol.	(D) Co Ni ² Cu	²⁺ 1 + 1↓1 ²⁺ 1↓1	3d N ↑ / N ↑ /	↑ ↑ ↑ ↑ ↓ ↑	4s			
4. Sol.	(C) Cr(+3) t2g half	oxidati filled.	on state	is stabl	e becau	se of		Hg ²⁺ M M M M M M $6s$							
5. Sol.	(D) Zn (3d ¹ No. of r respons	ed electi or metalli	rons in c bondii	d-orbital ng.	s are	11. Sol.	(A) Mn⁺ half stat 2Ct (Y	(A) Mn^{+2} has half filled d-orbital and Cr^{+3} has half filled t_{2g} orbital and hence they are stable states. $2CrO_4^{2-} + 2H^+ \longrightarrow Cr_2O_7^{2-} + H_2O_{Orange red}$							
6.	(A) Cr(24) Mn(25)		↑ ↑ 1 3d	<u>`</u> ↑	↑ 4s	electro	12. Sol.	(A) Higl is tran	(A) Highest oxidation state of transition metal is acidic. Lowest oxidation state of transition metal is basic.						
Sol. 7.	Fe(26) Co(27) Ni(28) (C)	↑ ↑	↑ ↑ 1 <u>↑</u> ↑ 1 <u>↑</u> 1 <u>↑</u> 1	 ↑ ↑ ↑ ↑ ↑ 		ns decreases	13. Sol.	(C) Cer of + con ⁵⁴ [X Ce ⁴ lant	(C) Cerium can also show the oxidation state of +4 in solution as it leads to a noble gas configuration, from ⁵⁴ [Xe] $4f^1$ 5d1 $6s^2$ to ⁵⁴ [Xe], after losing four electrons. It is only Ce ⁴⁺ which exist in solution among the lanthanides.						
Sol.	Np (93) Pu (94) There i 5f, 6s a electror): 5f ⁴ 6): 5f ⁶ 7 s very and 7: ns can	s ² s ² small e s subshe take par	energy ells. He	gap betv nce, all d format	ween their tion.	14. Sol.	(B) (P) TiC PdC CuC V ₂ C	(B) (P) - (ii), (Q) - (i), (R) - (iv), (S) - (iii) TiCl ₃ \rightarrow Ziegler-Natta polymerisation PdCl ₂ \rightarrow Wacker process CuCl ₂ \rightarrow Deacon's process V ₂ O ₅ \rightarrow Contact process						

- 15. (C) Sol. Tetrahedral structure of MnO4⁻ 16. (B) Sol. Electrical conductivity; Ag > Au > Al Density ; Os > Au > Hg Melting Point ; Cr < Mo < W Atomic Size ; Sc > Ti > V 17. (A) Sol. Greater the number of valence electrons, stronger is the resultant bonding and higher the enthalpy of atomisation. 18. (B) Sol. (Excited State Electromagnetic Electron radiation in visible promotior region 1 Ground t_{2g} state 19. (D) Fe^{2+} ; $3d^{6} 4s^{0}$, Fe^{3+} ; $3d^{5} 4s^{0}$ Sol. Stable configuration $Fe^{2+} \rightarrow Fe^{3+} + e^{-} IE_3$ is small (less than IE_2). 20. (C) Mn(25)-3d⁵
- Sol.

Maximum O.S. = 7

21.

4

 $\sqrt{15} = \sqrt{n(n+2)}$; n = 3, and three Sol. unpaired electrons are found when Mn is in Mn^{4+} i.e., $3d^3 4s^0$ configuration as its metal electron configuration is ¹⁸[Ar] 3d⁵ 4s². Mn in state = +4

22.	75						
Sol.	24 carats gold is considered 100% pure.						
	18 carat gold is $\frac{100}{24} \times 18 = 75\%$ pure						
23.	6						
Sol.	In alkaline medium ; $Mn^{+7} \longrightarrow Mn^{+6}$						
24.	60						
Sol.	60 pm						
25. Sol.	6 ²⁶ Fe – [Ar]3d ⁶ 4s ² Fe ^{2⁺} (24 electrons) – [Ar]3d ⁶ 4s ⁰						
26.	3.87						
Sol.	d ² $\uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow$ $n = 3; m = \sqrt{3(3+2)} BM$						
	= √15 BM = 3.87 B.M.						
27.	7						
Sol.	Actinides show +7 maximum oxidation state.						
28.	18						
• •	Cu (29) : 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹						
Sol.	Total 18e ⁻						
29.	0.85						
Sol.	Due to lanthanide contraction there occurs						
	net decrease in size. Only one 0.85Å is						
	closest to 0.85Å						
30. Sol	2.84 Valence shell electron configuration of						
501.	28 Ni ²⁺ is 3d ⁸ 4s ⁰ . Or						
	So, number of unpaired electrons (n) = 2						
	$\therefore \mu = \sqrt{n(n+2)} = \sqrt{2(2+2)} = \sqrt{8} \approx 2.84$						